Toggle light / dark theme

Generative AI has emerged as the next wave of innovation amidst the ongoing evolution of the technological landscape, attracting the attention of both researchers and investors.


Even as vector databases and Retrieval-Augmented Generation models become mainstream, offering innovative ways to handle and process data, traditional ETL processes retain their importance in the data management ecosystem. Traditional ETL is fundamental for preparing and structuring data from diverse sources into a coherent, standardized format, making it accessible and usable for various applications. This structured data is crucial for maintaining the accuracy and reliability of information within vector databases, which excel at handling similarity searches and complex queries by converting data into vector space.

Similarly, RAG models, which leverage vast databases to augment content generation with relevant information retrieval, depend on well-organized, high-quality data to enhance their output’s relevance and accuracy. By ensuring data is accurately extracted, cleaned and loaded into databases, traditional ETL processes complement the capabilities of vector databases and RAG models, providing a solid foundation of quality data that enhances their performance and utility. This symbiotic relationship underscores the continuing value of traditional ETL in the age of AI-driven data management, ensuring that advancements in data processing technologies are grounded in reliable and well-structured data sources.

The rise of generative AI has indeed shifted the technological focus, overshadowing some of the core technologies that have been instrumental in our digital progress.

There’s an episode of the show “Black Mirror” where a woman, trapped by grief, starts a relationship with an AI trained on her dead boyfriend’s data.

“You’re not enough of him,” she eventually decides. “You’re nothing.”

But even an empty happily-ever-after is tantalizing in the bleakness of 2024. AI platforms like ChatGPT claim to offer infinite solutions to infinite problems, from parking tickets to homework — and apparently now heartbreak as well. That’s right: if you’re still hung up after a breakup, now you can plug your ex’s emails and texts into a large language model, and date the simulacrum instead of moving on.

A chemical element so visually striking it was named for a goddess shows a “Goldilocks” level of reactivity—neither too much nor too little—that makes it a strong candidate as a carbon scrubbing tool.

The element is , and research by Oregon State University scientists, published in Chemical Science, has demonstrated the ability of vanadium peroxide molecules to react with and bind —an important step toward improved technologies for removing carbon dioxide from the atmosphere.

The study is part of a $24 million federal effort to develop new methods for , or DAC, of carbon dioxide, a that’s produced by the burning of fossil fuels and is associated with climate change.

New research on the continuity illusion uncovers how the brain perceives smooth motion, emphasizing the superior colliculus’s importance and suggesting new approaches for neuroscience research and clinical practice.

A study by a team at the Champalimaud Foundation (CF) has cast a new light on the superior colliculus (SC), a deep-seated brain structure often overshadowed by its more prominent cortical neighbor. Their discovery uncovers how the SC may play a pivotal role in how animals see the world in motion, and sheds light on the “continuity illusion,” an essential perceptual process integral to many of our daily activities, from driving vehicles to watching movies.

Understanding the Continuity Illusion.