Toggle light / dark theme

Endothelial cells line at the most inner layer of blood vessels. They act to control hemostasis, arterial tone/reactivity, wound healing, tissue oxygen, and nutrient supply. With age, endothelial cells become senescent, characterized by reduced regeneration capacity, inflammation, and abnormal secretory profile. Endothelial senescence represents one of the earliest features of arterial ageing and contributes to many age-related diseases. Compared to those in arteries and veins, endothelial cells of the microcirculation exhibit a greater extent of heterogeneity. Microcirculatory endothelial senescence leads to a declined capillary density, reduced angiogenic potentials, decreased blood flow, impaired barrier properties, and hypoperfusion in a tissue or organ-dependent manner.

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder.


Scientists have discovered a new neural pathway involved in how the brain encodes the transition to high-intensity fear response behaviors that are necessary for survival, according to a recent study published in Nature.

Jones Parker, Ph.D., assistant professor of Neuroscience, of Pharmacology and of Psychiatry and Behavioral Sciences, was a co-author of the study.

In mammals, the amygdala is involved in generating survival responses and transitioning to different high-intensity behaviors such as freezing or immobility (avoidance behavior) to escaping (flight behavior) in response to perceived threats.