Toggle light / dark theme

The term “memorability” refers to the likelihood that a particular stimulus, such as an object, face or sound, will be remembered by those exposed to it. Over the past few years, some psychology studies have been exploring the extent to which some stimuli are intrinsically more memorable than others, or in other words, whether people are generally more likely to remember them compared to other stimuli of the same type.

Researchers at the University of Chicago recently set out to specifically investigate the memorability of voices. Their findings, published in Nature Human Behaviour, suggest that some voices are more memorable than others and their memorability can be consistently predicted across different listeners.

“Research on intrinsic memorability—the consistencies in what people remember and forget—is a fairly new but active area of cognitive psychology,” Cambria Revsine, first author of the paper, told Medical Xpress. “Many studies from our lab and others have extensively explored this phenomenon over the past decade, finding that participants tend to remember the same images of faces, scenes, objects, and much more. However, no prior study to our knowledge has investigated the memorability of auditory stimuli.”

A team of neurologists, neuroradiologists and biomaterials specialists affiliated with several institutions in Spain has found that marathon runners undergo a reversible reduction in myelin in the brain during a race. In their study published in the journal Nature Metabolism, the group analyzed MRI scans of marathon runners before and after a race and then at later intervals to learn more about how participating in long races impacts the brain.

The at the journal have published a Research Briefing that outlines the work in the same issue and suggest that the team’s findings could influence the understanding of brain metabolism.

The researchers recruited 10 runners—eight male and two female—and performed MRI scans of their brains before they ran a 42K marathon. They administered a second scan 24 to 48 hours later. Two of the runners received an MRI two weeks later, and six runners were scanned two months after the race as a follow-up.

Research conducted by the National Institute on Drug Abuse, the Substance Abuse and Mental Health Services Administration, and the Centers for Disease Control and Prevention reveals that 1 in 4 adults using prescription stimulants engaged in misuse, and nearly 1 in 10 met the criteria for prescription stimulant use disorder (PSUD).

Findings show that amphetamine users were more likely to experience PSUD than those prescribed methylphenidate. Increased prescribing rates, particularly among middle-aged women, were observed, yet this demographic exhibited lower rates than younger .

Concerns over stimulant misuse have grown as prescribing rates for these medications, commonly used to treat attention-deficit/hyperactivity disorder (ADHD), have increased. Clinical practice guidelines for adult ADHD remain absent, leading to variations in diagnosis and treatment. Questions about appropriate use persist as research indicates both the protective benefits of ADHD pharmacotherapy and its potential risks, including misuse, overprescription, and development of use disorders.

Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D-printer. It can also be printed in one go, from one material.

That is exactly what roboticists have achieved in robots developed by the Bioinspired Robotics Laboratory at the University of California San Diego. They describe their work in an advanced online publication in the journal Advanced Intelligent Systems.

To achieve this feat, researchers aimed to use the simplest technology available: a desktop 3D-printer and an off-the-shelf printing material. This design approach is not only robust, it is also cheap—each robot costs about $20 to manufacture.

The arrangement of small molecules—known as ligands—around transition metal atoms affects how the metal atoms behave. This is important because transition metals are used as catalysts in the synthesis of a wide range of important materials.

Now, in a study published in the Journal of the American Chemical Society, researchers from the University of Osaka have reported a chemical bond that hadn’t been reported before: complexes of , a metal, with simple containing , a non-metal.

Transition metals are known to form complexes with ligands containing atoms from group 13 elements, including aluminum, gallium, and indium. These are known as Z-type ligands, and they can accept electrons from a metal. However, boron, the smallest element in group 13, has only been shown to do this with the support of additional ligands that help approach metals to the boron center.

What happens when a quantum physicist is frustrated by the limitations of quantum mechanics when trying to study densely packed atoms? At EPFL, you get a metamaterial, an engineered material that exhibits exotic properties.

That frustrated physicist is Ph.D. student Mathieu Padlewski. In collaboration with Hervé Lissek and Romain Fleury at EPFL’s Laboratory of Wave Engineering, Padlewski has built a novel acoustic system for exploring condensed matter and their macroscopic properties, all the while circumventing the extremely sensitive nature that is inherent to . Moreover, the can be tweaked to study properties that go beyond solid-state physics. The results are published in Physical Review B.

“We’ve essentially built a playground inspired by that can be adjusted to study various systems. Our metamaterial consists of highly tunable active elements, allowing us to synthesize phenomena that extend beyond the realm of nature,” says Padlewski. “Potential applications include manipulating waves and guiding energy for telecommunications, and the setup may one day provide clues for harvesting energy from waves for instance.”

Interferometers, devices that can modulate aspects of light, play the important role of modulating and switching light signals in fiber-optic communications networks and are frequently used for gas sensing and optical computing.

Now, applied physicists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have invented a new type of interferometer that allows precise control of light’s frequency, intensity and mode in one compact package.

Called a cascaded-mode interferometer, it is a single waveguide on a silicon-on-insulator platform that can create multiple signal paths to control the amplitude and phase of light simultaneously, a process known as optical spectral shaping. By combining mechanisms to manipulate different aspects of light into a single waveguide, the could be used in advanced nanophotonic sensors or on-chip quantum computing.

When the plasma inside a fusion system starts to misbehave, it needs to be quickly cooled to prevent damage to the device. Researchers at Commonwealth Fusion Systems believe the best bet is a massive gas injection: essentially, a well-timed, rapid blast of cooling gas inside their fusion system, which is known as SPARC.

But how many gas valves does it take to quickly tame a plasma that is hotter than the sun? The team has to strike the perfect balance: with too few valves, some parts of SPARC might overheat. With too many, valuable space inside the vessel would be wasted.

To answer this question, researchers turned to a known as M3D-C1, which is developed and maintained by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The code was used to model different valve configurations, and the results show that spacing six gas valves around the fusion vessel, with three on the top and three on the bottom, provides optimal protection.

NASA’s Parker Solar Probe just screamed past the Sun for the 23rd time, once again matching its own records for closest approach and fastest human-made object. Zooming through space at 430,000 mph and skimming just 3.8 million miles from the solar surface, the probe is in perfect health and sendi

Scientists have provided the most detailed account yet of the earliest stages of DNA replication, an essential process for all life to grow and reproduce. For the first time, scientists have directly observed the very moment DNA begins to unravel, a critical molecular event that underpins its rol