Toggle light / dark theme

Think big. Despite its research topic, this could well be the motto of the Graphene Flagship, which was launched in 2013: With an overall budget of one billion Euros, it was Europe’s largest research initiative to date, alongside the Human Brain Flagship, which was launched at the same time.

The same applies to the review article on the effects of graphene and related materials on health and the environment, which Empa researchers Peter Wick and Tina Bürki just published together with 30 international colleagues in the journal ACS Nano; they summarize the findings on the health and ecological risks of graphene materials, the reference list includes almost 500 original publications.

A wealth of knowledge—which also gives the all-clear. “We have investigated the potential acute effects of various graphene and graphene-like materials on the lungs, in the and in the placenta—and no serious acute cell-damaging effects were observed in any of the studies,” says Wick, summarizing the results.

We don’t exactly know why we age; we know what aging looks like —the “symptoms”, so to speak— but the root causes remain foggy. One leading hypothesis is that the changes associated with old age, both external and internal, are a result of accumulating DNA damage. As this damage builds, cellular functions begin to break down and important pathways start going haywire.

One of the most extreme forms of DNA damage is the double-strand break, which happens when a strand of DNA snaps in half, leaving two separate slivers floating around. Left unfixed, these strands can snag at and break chromosomes, leading to diseases like cancer and other disorders. But how the body repairs this kind of wreckage has been a source of mystery. Now, scientists at the Dresden University of Technology have managed to shine a light on the process. Published in Cell, their work offers important new insights that may eventually help treat, and possibly reverse, DNA damage.

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing. The new combination of materials, created by a team led by researchers at Penn State, could also provide a platform to explore physical behaviors similar to those of mysterious, theoretical particles known as chiral Majoranas, which could be another promising component for quantum computing.

The new study was recently published in the journal Science. The work describes how the researchers combined the two magnetic materials in what they called a critical step toward realizing the emergent interfacial superconductivity, which they are currently working toward.

High-speed experiments can help identify lightweight, protective “metamaterials” for spacecraft, vehicles, helmets, or other objects.

An intricate, honeycomb-like structure of struts and beams could withstand a supersonic impact better than a solid slab of the same material. What’s more, the specific structure matters, with some being more resilient to impacts than others.

That’s what MIT engineers are finding in experiments with microscopic metamaterials — materials that are intentionally printed, assembled, or otherwise engineered with microscopic architectures that give the overall material exceptional properties.

A Massachusetts Institute of Technology (MIT) student has created a device that allows humans to communicate with machines using our minds — and it truly is incredible.

Arnav Kapur created a device called AlterEgo, which is a wearable type of headset that allows users to communicate with technology without even speaking a word.

So how does it work?

“Our task,” Fedorov wrote, “is to make nature, the blind force of nature, into an instrument of universal resuscitation and to become a union of immortal beings.”

Fedorov’s writing never turned mainstream, but it did spawn a short-lived, visionary philosophical movement known as Cosmism. Materialized during the Industrial Revolution — a time of unprecedented societal change — the movement generally sought to redefine mankind’s relationship with technology and progress, with the ultimate goal of regulating the forces of nature so that humanity could achieve unity and immortality. The movement offered a more spiritual alternative to both futurism and communism.

Although the latter annihilated Cosmism before it had a chance to mature, its maxims have acquired new relevancy in the age of Big Tech. The following interview with Boris Groys, a distinguished professor of Russian and Slavic studies at New York University and editor of the new book Russian Cosmism, reveals why.

San Francisco-based startup Magic AI just secured more than $100 million in funding to develop an AI software engineer, which it sees as a milestone along the path to artificial general intelligence (AGI).

The background: Everything we see and do on our devices starts as code, and traditionally, that code was written by trained software engineers. In 2021, OpenAI disrupted this paradigm with CODEX, an AI that can write computer code in response to prompts written in natural language.

CODEX became the basis for GitHub Copilot, a tool that speeds up programming by generating new code in response to prompts, auto-completing code an engineer has started writing, and more. This can speed up programming by an average of 55%, and more than a million developers have used GitHub Copilot since its release in 2022.

Studying a rock is like reading a book. The rock has a story to tell, says Frieder Klein, an associate scientist in the Marine Chemistry & Geochemistry Department at the Woods Hole Oceanographic Institution (WHOI).

The rocks that Klein and his colleagues analyzed from the submerged flanks of the St. Peter and St. Paul Archipelago in the St. Paul’s oceanic transform fault, about 500 km off the coast of Brazil, tell a fascinating and previously unknown story about parts of the geological carbon cycle.

Transform faults, where tectonic plates move past each other, are one of three main plate boundaries on Earth and about 48,000 km in length globally, with the others being the global mid-ocean ridge system (about 65,000 km) and subduction zones (about 55,000 km).