Toggle light / dark theme

Lethal drones with facial recognition, armed robots, autonomous fighter jets: we’re at the dawn of a new age of AI-powered warfare, says technologist Alexandr Wang. He explores why data will be the secret weapon in this uncharted landscape and emphasizes the need to consider national security when developing new tech — or potentially face all-out AI warfare.

If you love watching TED Talks like this one, become a TED Member to support our mission of spreading ideas: https://ted.com/membership.

Follow TED!
Twitter: / tedtalks.
Instagram: / ted.
Facebook: / ted.
LinkedIn: / ted-conferences.
TikTok: / tedtoks.

The TED Talks channel features talks, performances and original series from the world’s leading thinkers and doers. Subscribe to our channel for videos on Technology, Entertainment and Design — plus science, business, global issues, the arts and more. Visit https://TED.com to get our entire library of TED Talks, transcripts, translations, personalized talk recommendations and more.

New Haven, Conn. — Contrary to popular belief, brain cells use a mix of analog and digital coding at the same time to communicate efficiently, according to a study by Yale School of Medicine researchers published this week in Nature.

This finding partially overturns a longstanding belief that each of the brain’s 100 billion neurons communicate strictly by a digital code. Analog systems represent signals continuously, while digital systems represent signals in the timing of pulses. Traditionally, many human-designed circuits operate exclusively in analog or in digital modes.

“This study reveals that the brain is very sophisticated in its operation, using a code that is more efficient than previously appreciated,” said David McCormick, professor in the Department of Neurobiology and senior author of the study. “This has widespread implications, not only for our basic understanding of how the brain operates, but also in our understanding of neuronal dysfunction.”

There was a APS presentation by Ulsan Korea University researchers.

It is being reported that numerous comments on the Chinese website Zhihu imply that the University of Ulsan’s data plot is so important that a certain superconductivity expert saw the decisive signal proving LK99’s superconductivity in the graph’s temperature rise curve near 200K.

Nextbigfuture does not understand how a resistance rise implies any superconductivity but it is a thin film LK99-related material. Previously, LK99 thin film analysis by the original Korea researchers had found superconducting levels of resistance with chemically vapor deposited thin film.

Condensed matter systems and photonic technologies are regularly used by researchers to create microscale platforms that can simulate the complex dynamics of many interacting quantum particles in a more accessible setting. Some examples include ultracold atomic ensembles in optical lattices, superconducting arrays, and photonic crystals and waveguides. In 2006 a new platform emerged with the demonstration of macroscopically coherent quantum fluids of exciton-polaritons to explore many-body quantum phenomena through optical techniques.

When a piece semiconductor is placed between two mirrors—an optical microresonator—the electronic excitations within can become strongly influenced by photons trapped between the mirrors. The resulting new bosonic , known as exciton-polaritons (or polaritons for short), can under the right circumstances undergo a phase transition into a nonequilibrium Bose-Einstein condensate and form a macroscopic quantum fluid or a droplet of light.

Quantum fluids of polaritons have many salient properties, one being that they are optically configurable and readable, permitting easy measurements of the dynamics. This is what makes them so advantageous to simulate many-body physics.

We may not have reached artificial general intelligence (AGI) yet, but as one of the leading experts in the theoretical field claims, it may get here sooner rather than later.

During his closing remarks at this year’s Beneficial AGI Summit in Panama, computer scientist and haberdashery enthusiast Ben Goertzel said that although people most likely won’t build human-level or superhuman AI until 2029 or 2030, there’s a chance it could happen as soon as 2027.

After that, the SingularityNET founder said, AGI could then evolve rapidly into artificial superintelligence (ASI), which he defines as an AI with all the combined knowledge of human civilization.

Scientists have grown small but complex models of human organs from live fetus cells for the first time, giving experts new insight into our development and potential treatments for malformations while in the womb.

These organoids aren’t full replicas of organs, but they’re close enough to the real deal that they can be used to study disease and other aspects of human biology that are difficult to investigate in living people.

In a new study carried out by an international team of researchers, lung, kidney, and intestine organoids were grown from living stem cells in amniotic fluid. This fluid helps to protect the growing baby and feed it with nutrients, and is taken from the mother without harming her baby as part of regular pregnancy tests.

Universal behavior is a central property of phase transitions, which can be seen, for example, in magnets that are no longer magnetic above a certain temperature. A team of researchers from Kaiserslautern, Berlin and Hainan, China, has succeeded for the first time in observing such universal behavior in the temporal development of an open quantum system, a single cesium atom in a bath of rubidium atoms.

This finding helps to understand how quantum systems reach equilibrium. This is of interest to the development of quantum technologies, for example. The study has been published in Nature Communications.

Phase transitions in chemistry and physics are changes in the state of a substance, for example, the change from a liquid to a gaseous phase, when an external parameter such as temperature or pressure is changed.