Toggle light / dark theme

Humans have been poisoning rodents for centuries. But fast-breeding rats and mice have evolved resistance to earlier poisons. In response, manufacturers have produced second generation anticoagulant rodenticides such as bromadiolone, widely used in Australian households.

Unfortunately, these potent poisons do not magically disappear after the is dead. For example, it’s well known who eat poisoned rodents suffer the same slow death from .

Our new research, published in the journal Science of The Total Environment, shows the problem is much bigger than owls. We found Australia’s five largest marsupial predators—the four quoll species and the Tasmanian devil—are getting hit by these poisons too.

A research team led by Prof. Wang Xianlong and Dr. Wang Pei from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has discovered a concurrent negative photoconductivity (NPC) and superconductivity in PbSe0.5 Te0.5 by pressure-induced structure transition. The study has been published in Advanced Materials.

NPC is a unique phenomenon where the conductivity of a material decreases due to the trapping of charge carriers in localized states, leading to a reduction in the number of free carriers, which is contrary to the more common behavior of positive photoconductivity (PPC).

Though NPC holds great promise in next-generation semiconductor optoelectronics and its application potential has recently reached far beyond photodetection, the phenomenon has rarely been reported. In particular, concurrent NPC and are rarely observed at high-pressure due to the lack of in situ experimental measuring facilities.

Researchers from the National University of Singapore (NUS) and University of New South Wales (UNSW) Sydney have proven that a spinning atomic nucleus really is fundamentally a quantum resource. The teams were led respectively by Professor Valerio Scarani, from NUS Department of Physics, and Scientia Professor Andrea Morello from UNSW Engineering. The paper was published in the journal Newton on 14 February 2025.

It has long been inferred that tiny particles such as electrons or protons are indeed quantum due to the way they get deflected in a magnetic field. However, when left to spin freely, they appear to behave in exactly the same way as a classical spinning item, such as a Wheel of Fortune turning on its axis. For more than half a century, experts in spin resonance have taken this fact as a universal truth.

For the same reason, a technician or a doctor operating a (MRI) machine at the hospital never needed to understand quantum mechanics—the spinning of the protons inside the patient’s body produces the same kind of magnetic field that would be created by attaching a fridge magnet to a spinning wheel.

One of the tiniest building blocks of the universe has a weigh-in problem, and Ashutosh Kotwal is determined to get to the bottom of it.

For nearly 30 years, the Duke physicist has led a worldwide effort to home in on the mass of a fundamental particle called the W boson.

It’s the force-carrying particle that allows the sun to burn and to form, so it’s pretty important. Without it, the entire universe would be in the dark.

Why do avalanches start to slide? And what happens inside the “pile of snow?” If you ask yourself these questions, you are very close to a physical problem. This phenomenon not only occurs on mountain peaks and in snow masses, where it is rather uncontrolled—it is also studied in the laboratory at the microscopic level in materials with a disordered particle structure, for example in glasses, granular materials or foams.

Particles can “slide” in a similar way to avalanches, causing the structure to lose its and become deformable, even independently of a change in temperature. But what happens inside such a shaky structure?

Physicist Matthias Fuchs from the University of Konstanz and his colleagues Florian Vogel and Philipp Baumgärtel are researching these disordered solids. Two years ago, they solved an old puzzle about glass vibrations by revisiting a forgotten theory. “Now we have continued the project to answer the question of when an ‘irregular house of cards collapses.’ We want to find out when an amorphous solid loses its stability and starts to slide like a pile of sand,” says Fuchs.

Researchers at NIMTE have turned metal corrosion into a tool for efficient biomass upgrading, achieving high HMF-to-BHMF conversion rates with a CoCuMW/CF electrode. Their findings offer a low-cost, sustainable solution for bio-based chemical production.

A research team led by Prof. Jian Zhang from the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) has harnessed metal corrosion to develop high-performance electrodes, facilitating the efficient and cost-effective upgrading of bio-based 5-hydroxymethylfurfural (HMF). Their findings were published in Chem Catalysis.

While corrosion is typically associated with material degradation and economic loss, researchers are now investigating its potential for advantageous applications, particularly in biomass upgrading.

A strange molecular pattern, first mistaken for an error, led researchers to an unexpected discovery: molecules forming non-repeating structures similar to the einstein tiling problem.

This phenomenon, driven by chirality and energy balance, could pave the way for novel insights into molecular physics.

At the crossroads of mathematics and tiling lies the einstein problem—a puzzle that, despite its name, has nothing to do with Albert Einstein. The question is simple yet profound: Can a single shape tile an infinite surface without ever creating a repeating pattern? In 2022, English amateur mathematician David Smith discovered such a shape, known as a “proto-tile.”