Menu

Blog

Page 17

Jan 5, 2025

Surgeon catches cancer from patient in ‘first-ever’ case with experts shocked

Posted by in categories: biotech/medical, genetics

In a shocking turn of events, a surgeon operating on a cancer patient managed to contract the deadly disease in what is believed to be an unprecedented case. The doctor was performing surgery on a 32-year-old German man suffering from a rare type of cancer when he accidentally “transplanted” the disease into himself.

This occurred when cells from the patient’s tumor seeped into a cut on the surgeon’s hand. Despite immediate disinfection and bandaging, the 53-year-old medic noticed a hard lump developing at the base of his middle finger five months later.

A hand specialist identified the lump as a malignant tumor genetically identical to cancer suffered by his former patient. Doctors treating him concluded that he had contracted cancer when his patient’s tumor cells seeped into the cut.

Jan 5, 2025

Revolutionizing Electronics: The 2D Twist That Defied Scientific Predictions

Posted by in categories: materials, particle physics

Scientists are exploring 2D materials — sheets just one atom thick — with unique and promising electronic properties.

When two of these sheets are layered at specific angles, they can exhibit remarkable behaviors, such as superconductivity. Antonija Grubišić-Čabo, a materials scientist at the University of Groningen, and her colleagues investigated one such “twisted” material and found that it behaved in ways that defied existing theoretical predictions.

2D Materials and Superconductivity.

Jan 4, 2025

Scientists Warn Against Creation of Mirror Life That May Cause an Extinction

Posted by in categories: biological, bitcoin, chemistry, cryptocurrencies, existential risks

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about the potential dangers of mirror life.
Links:
https://purl.stanford.edu/cv716pj4036
https://theconversation.com/mirror-life-forms-may-sound-like…ent-246013
https://www.nature.com/articles/s41565-024-01627-z.
https://www.nature.com/articles/s41557-023-01411-x.
Previous videos:


https://youtu.be/0MRGJNKACYs.
https://youtu.be/L1wkR-92Rys.
#chirality #biology #mirrorlife.

Continue reading “Scientists Warn Against Creation of Mirror Life That May Cause an Extinction” »

Jan 4, 2025

Concerns rise as HMPV virus spreads in China, drawing COVID-19 comparisons

Posted by in category: biotech/medical

In china their resources are getting overwhelmed and it seems to be similar to covid 19. I think it could be another pandemic in weeks globally.


A mysterious virus known as HMPV (human metamnemovirus) is reportedly spreading in China, raising concerns due to its similarities with the COVID-19 outbreak.

Jan 4, 2025

Some doctors increasingly using artificial intelligence to take notes during appointments

Posted by in categories: biotech/medical, mobile phones, robotics/AI

It was easy to miss Dr. Robert Gray’s quick movements, tapping the screen of his smartphone at the beginning and end of patient visits on a recent day.

But Gray said those fast finger taps have changed his life. He was tapping an app that records discussions during his appointments and then uses to find the relevant information, summarize it and zap it, within seconds, into each patient’s electronic medical record.

The technology was meticulously documenting each visit so Gray didn’t have to.

Jan 4, 2025

Hydrogels for active photonics

Posted by in categories: materials, nanotechnology

Conventional photonic devices exhibit static optical properties that are design-dependent, including the material’s refractive index and geometrical parameters. However, they still possess attractive optical responses for applications and are already exploited in devices across various fields. Hydrogel photonics has emerged as a promising solution in the field of active photonics by providing primarily deformable geometric parameters in response to external stimuli. Over the past few years, various studies have been undertaken to attain stimuli-responsive photonic devices with tunable optical properties. Herein, we focus on the recent advancements in hydrogel-based photonics and micro/nanofabrication techniques for hydrogels. In particular, fabrication techniques for hydrogel photonic devices are categorized into film growth, photolithography (PL), electron-beam lithography (EBL), and nanoimprint lithography (NIL). Furthermore, we provide insights into future directions and prospects for deformable hydrogel photonics, along with their potential practical applications.


Microsystems & Nanoengineering volume 10, Article number: 1 (2024) Cite this article.

Jan 4, 2025

Achieving bone regeneration and adhesion with harmless visible light

Posted by in categories: particle physics, robotics/AI

Oregon State University researchers have found luminescent nanocrystals with fast light-dark switching capabilities.

“The extraordinary switching and memory capabilities of these nanocrystals may one day become integral to optical computing – a way to rapidly process and store information using light particles, which travel faster than anything in the universe,” said Artiom Skripka, assistant professor in the OSU College of Science.


The race for faster, more efficient computing is on. And now, scientists have taken a significant leap forward with the discovery of a unique type of nanocrystal.

Continue reading “Achieving bone regeneration and adhesion with harmless visible light” »

Jan 4, 2025

Integrated spin wave storage advances quantum networks

Posted by in categories: innovation, quantum physics

The University of Science and Technology of China has achieved a significant milestone in quantum memory research, addressing a long-standing challenge in integrated solid-state devices. The team, led by Chuan-Feng Li and Zong-Quan Zhou, has demonstrated an integrated spin-wave quantum memory capable of extended storage times and on-demand retrieval. This development marks a critical step toward scalable quantum networks.

Quantum memories play a pivotal role in enabling long-distance entanglement by linking short-distance connections, overcoming photon transmission losses. Rare-earth ions doped crystals have emerged as promising systems for quantum memory, with integrated solid-state devices showing particular potential. However, prior implementations were limited to optically excited states, which inherently restrict storage time and retrieval flexibility due to the short lifetime of these states.

The breakthrough lies in the implementation of spin-wave storage. This approach encodes photons into spin-wave excitations in ground states, vastly extending storage times to the spin coherence lifetime and enabling on-demand retrieval. Nevertheless, the challenge of separating single-photon signals from noise caused by strong control pulses has hindered progress in integrated structures — until now.

Jan 4, 2025

Flying green: ion propulsion in the atmosphere

Posted by in category: transportation

Create a prototype of an efficient aircraft capable of flying with ion propulsion. This is the aim of the IPROP project, led by Politecnico di Milano, and funded by the EU with an EIC pathfinder worth €3 million and lasting four years.

Jan 4, 2025

A quantum walk simulation of extra dimensions with warped geometry

Posted by in categories: information science, particle physics, quantum physics

We investigate the properties of a quantum walk which can simulate the behavior of a spin 1/2 particle in a model with an ordinary spatial dimension, and one extra dimension with warped geometry between two branes. Such a setup constitutes a \(1+1\) dimensional version of the Randall–Sundrum model, which plays an important role in high energy physics. In the continuum spacetime limit, the quantum walk reproduces the Dirac equation corresponding to the model, which allows to anticipate some of the properties that can be reproduced by the quantum walk. In particular, we observe that the probability distribution becomes, at large time steps, concentrated near the “low energy” brane, and can be approximated as the lowest eigenstate of the continuum Hamiltonian that is compatible with the symmetries of the model. In this way, we obtain a localization effect whose strength is controlled by a warp coefficient. In other words, here localization arises from the geometry of the model, at variance with the usual effect that is originated from random irregularities, as in Anderson localization. In summary, we establish an interesting correspondence between a high energy physics model and localization in quantum walks.


Anglés-Castillo, A., Pérez, A. A quantum walk simulation of extra dimensions with warped geometry. Sci Rep 12, 1926 (2022). https://doi.org/10.1038/s41598-022-05673-2

Download citation.

Continue reading “A quantum walk simulation of extra dimensions with warped geometry” »

Page 17 of 12,317First1415161718192021Last