Toggle light / dark theme

Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science. Respective papers are linked below.

Round 1 Interview | What are Cognitive Light Cones? • What are Cognitive Light Cones? (Mich…
Round 2 Interview | Agency, Attractors, & Observer-Dependent Computation in Biology & Beyond • Agency, Attractors, & Observer-Depend…

Bioelectric Networks: The cognitive glue enabling evolutionary scaling from physiology to mind https://link.springer.com/article/10
Darwin’s Agential Materials: Evolutionary implications of multiscale competency in developmental biology https://link.springer.com/article/10
Biology, Buddhism, and AI: Care as the Driver of Intelligence https://www.mdpi.com/1099-4300/24/5/710

Bioelectric Networks as \.

The mechanism can also create better biological imaging tools to see deep inside tissues using safer infrared light. It could even cool materials with lasers, by removing thermal energy through UCPL.

“By establishing an intrinsic model of UCPL in single-walled carbon nanotubes, we hope to open up new possibilities for designing advanced optoelectronic and photonic devices,” added Kato.

What the RIKEN scientists have essentially discovered is that one does not need structural defects for up-conversion in carbon nanotubes. Instead, phonons and dark excitons do the trick. This opens up cleaner, more efficient, and more flexible designs for future energy and photonic technologies.

The present century has witnessed a proactive shift toward more sustainable forms of energy, including renewable resources such as solar power, wind, nuclear energy, and geothermal energy. These technologies naturally require robust energy storage systems for future usage. In recent years, lithium-ion batteries have emerged as dominant energy storage systems. However, they are known to suffer from critical safety issues.

In this regard, zinc-ion batteries based on water-based electrolytes offer a promising solution. They are inherently safe, environmentally friendly, as well as economically viable. These batteries also mitigate fire risks and thermal runaway issues associated with their lithium-based counterparts, which makes them lucrative for grid-scale energy storage.

Furthermore, zinc has high capacity, low cost, ample abundance, and low toxicity. Unfortunately, current collectors utilized in zinc-ion batteries, such as graphite foil, are difficult to scale up and suffer from relatively poor mechanical properties, limiting their industrial use.

Neuromelanin is a unique pigment made by some human catecholamine neurons. These neurons survive with their neuromelanin content for a lifetime but can also be affected by age-related neurodegenerative conditions, as observed using new neuromelanin imaging techniques. The limited quantities of neuromelanin has made understanding its normal biology difficult, but recent rodent and primate models, as well as omics studies, have confirmed its importance for selective neuronal loss in Parkinson’s disease (PD). We review the development of neuromelanin in dopamine versus noradrenaline neurons and focus on previously overlooked cellular organelles in neuromelanin formation and function. We discuss the role of neuromelanin in stimulating endogenous α-synuclein misfolding in PD which renders neuromelanin granules vulnerable, and can exacerbates other pathogenic processes.

The soft, waxy “solid refrigerant” being investigated in a UK laboratory may not look very exciting, but its unusual properties promise an air-conditioning revolution that could eliminate the need for greenhouse gases.

The substance’s temperature can vary by more than 50 degrees Celsius (90 degrees Fahrenheit) under pressure, and unlike the gases currently used in appliances solid refrigerants, it does not leak.

“They don’t contribute to , but also they are potentially more energy efficient,” Xavier Moya, a professor of materials physics at the University of Cambridge, told AFP.

Researchers from the University of Oklahoma have made significant advances in a promising technology for efficient energy conversion and chemical processing. Two recent studies involving protonic ceramic electrochemical cells, called PCECs, address significant challenges in electrochemical manufacturing and efficiency. These innovations are a crucial step toward reliable and affordable solutions for hydrogen production and clean energy storage.

The studies were led by Hanping Ding, Ph.D., an assistant professor in the School of Aerospace and Mechanical Engineering at the University of Oklahoma.

PCECs have traditionally struggled to maintain performance under the required for commercial use. In a study featured in Nature Synthesis, Ding and his colleagues reported a new approach that eliminates the need for cerium-based materials, which are prone to breakdown under high steam and heat.