Toggle light / dark theme

Tesla Summon and Autopark are set to gain major improvements next month, according to company CEO Elon Musk. Autopark is also getting a new name, Musk said, as it appears to be on its way to being called “Banish.”

After Musk stated earlier this month that Tesla would have some “really cool stuff coming this month and next,” owners and fans of the company were left with their own imaginations to think of what could possibly be coming.

While many owners have wished for improvements of things like the Auto Wipers, Tesla has been working behind the scenes to improve some of its semi-autonomous driving features and certain parts of Enhanced Autopilot, including Summon and Autopark.

It takes more than a galaxy merger to make a black hole grow and new stars form: machine learning shows cold gas is needed too to initiate rapid growth — new research finds.

When they are active, supermassive black holes play a crucial role in the way galaxies evolve. Until now, growth was thought to be triggered by the violent collision of two galaxies followed by their merger, however new research led by the University of Bath suggests galaxy mergers alone are not enough to fuel a black hole — a reservoir of cold gas at the centre the host galaxy is needed too.

The new study, published this week in the journal Monthly Notices of the Royal Astronomical Society is believed to be the first to use machine learning to classify galaxy mergers with the specific aim of exploring the relationship between galaxy mergers, supermassive black-hole accretion and star formation. Until now, mergers were classified (often incorrectly) through human observation alone.

Researchers at Osaka University’s Institute of Scientific and Industrial Research (SANKEN) used the shortcuts to the adiabaticity (STA) method to greatly speed-up the adiabatic evolution of spin qubits. The spin flip fidelity after pulse optimization can be as high as 97.8% in GaAs quantum dots. This work may be applicable to other adiabatic passage and will be useful for fast and high-fidelity quantum control.

A quantum computer uses the superposition of “0” and “1” states to perform information processing, which is completely different from classical computing, thus allowing for the solution of certain problems at a much faster rate.

High-fidelity quantum state operation in large enough programmable qubit spaces is required to achieve the “quantum advantage.” The conventional method for changing quantum states uses pulse control, which is sensitive to noises and control errors.

At some point, theoretical physics shades into science fiction. This is a beautiful little book, by a celebrated physicist and writer, about a phenomenon that is permitted by equations but might not actually exist. Or perhaps white holes do exist, and are everywhere: we just haven’t noticed them yet. No such controversy exists about black holes, wh…

Exploring the cutting edge of genetic engineering, the development of programmable recombinases and zinc finger domains is ushering in a new era of precision in DNA manipulation. These advances enable precise genomic alterations, from single nucleotide changes to the insertion of large DNA segments, potentially transforming the landscape of therapeutic gene editing and opening new possibilities in personalised medicine.