Toggle light / dark theme

Researchers have developed methods to entangle large numbers of particles, improving the precision and speed of quantum measurements. These advancements could revolutionize quantum sensors and atomic clocks, with potential applications in fundamental physics research.

Opening new possibilities for quantum sensors, atomic clocks, and tests of fundamental physics, JILA researchers have developed new ways of “entangling” or interlinking the properties of large numbers of particles. In the process they have devised ways to measure large groups of atoms more accurately even in disruptive, noisy environments.

The new techniques are described in a pair of papers published in Nature.[1] JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

A system designed at MIT could allow sensors to operate in remote settings, without batteries.

MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment.

Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations for long periods of time.

Professor Wladek Forysiak from Aston Institute of Photonic Technologies and Dr. Ian Phillips were part of the team that successfully transmitted the data. They worked in collaboration with researchers from the National Institute of Information and Communications Technology (NICT) in Japan and Nokia Bell Labs in the U.S.

As the demand for more data increases, it is expected the newly developed technology will help keep up with future demand. The scientists used optical fibers, small tubular strands of glass that pass information using light. Regular copper cables can’t carry data at such speeds.

The feat was achieved by opening up new wavelength bands that are not yet used in fiber optic systems. Different wavelength bands are equivalent to different colors of light being transmitted down the optical fiber.