Toggle light / dark theme

The advent of CRISPR gene editing, along with nanopore genome sequencing and single-cell RNA sequencing, has allowed the study of host-microbe interactions with newfound accuracy and power. The studies taking advantage of these tools have provided insights with never-before seen precision and, excitingly, have revealed surprising findings on principles of host-microbe interactions. This special issue reviews and interprets host immunological and developmental interactions with the resident microbiome. The articles reflect on evolutionary principles guiding how hosts interact with their commensal microbiota and offer new techniques and directions for research that we hope will advance the field in the years to come.

This issue is available to buy in print. Visit our information for readers page for purchasing options.

Researchers have made a pioneering discovery that astrocytes, cells within the central nervous system traditionally not associated with immune functions, are capable of developing what’s being called an “immune memory.” This capability…


Summary: Astrocytes, traditionally non-immune cells within the central nervous system, possess the ability to develop an immune memory, responding more vigorously to subsequent immune challenges. This groundbreaking study reveals that through an epigenetic mechanism involving the enzymes p300 and ATP-citrate lyase (ACLY), astrocytes enhance their pro-inflammatory responses, a trait similar to the immune memory seen in adaptive immunity.

The findings, which have been observed in both mouse models of multiple sclerosis (MS) and human cell samples, suggest that astrocyte immune memory may play a significant role in chronic neurological disorders, offering new insights into disease pathology and potential therapeutic targets to mitigate CNS inflammation.

AI image generation company Stability AI is in big trouble.

Several key AI developers who worked on Stable Diffusion, the company’s popular text-to-image generator, have resigned, Forbes reports.

Stability AI CEO Emad Mostaque announced the news during an all-hands meeting last week, per Forbes, revealing that three of the five researchers who originally created the foundational tech that powers Stable Diffusion at two German universities, had left.

In the realm of physics, synthetic dimensions (SDs) have emerged as one of the frontiers of active research, offering a pathway to explore phenomena in higher-dimensional spaces, beyond our conventional 3D geometrical space. The concept has garnered significant attention, especially in topological photonics, due to its potential to unlock rich physics inaccessible in traditional dimensions.

Importantly, the superior temporal sulcus (STS), and superior temporal gyrus (STG) are considered core areas for multisensory integration (, ), including for olfactory–visual integration (). The STS was significantly connected to the IPS during multisensory integration, as indicated by the PPI analysis ( Fig. 3 ) focusing on functional connectivity of IPS and whole-brain activation. Likewise, the anterior and middle cingulate cortex, precuneus, and hippocampus/amygdala were activated when testing sickness-cue integration-related whole-brain functional connectivity with the IPS but were not activated when previously testing for unisensory odor or face sickness perception. In this context, hippocampus/amygdala activation may represent the involvement of an associative neural network responding to threat () represented by a multisensory sickness signal. This notion supports the earlier assumption of olfactory-sickness–driven OFC and MDT activation, suggested to be part of a neural circuitry serving disease avoidance. Last, the middle cingulate cortex has recently been found to exhibit enhanced connectivity with the anterior insula during a first-hand experience of LPS-induced inflammation (), and this enhancement has been interpreted as a potential neurophysiological mechanism involved in the brain’s sickness response. Applied to the current data, the middle cingulate cortex, in the context of multisensory-sickness–driven associations between IPS and whole-brain activations, may indicate a shared representation of an inflammatory state and associated discomfort.

In conclusion, the present study shows how subtle and early olfactory and visual sickness cues interact through cortical activation and may influence humans’ approach–avoidance tendencies. The study provides support for sensory integration of information from cues of visual and olfactory sickness in cortical multisensory convergences zones as being essential for the detection and evaluation of sick individuals. Both olfaction and vision, separately and following sensory integration, may thus be important parts of circuits handling imminent threats of contagion, motivating the avoidance of sick conspecifics (, ).