Toggle light / dark theme

A chemical reaction that’s vital to a range of commercial and industrial goods may soon be initiated more effectively and less expensively thanks to a collaboration that included Oregon State University College of Engineering researchers.

The study, published in Nature, involves —adding the diatomic hydrogen molecule, H2, to other compounds.

“Hydrogenation is a critical and diverse reaction used to create food products, fuels, commodity chemicals and pharmaceuticals,” said Zhenxing Feng, associate professor of chemical engineering. “However, for the reaction to be economically viable, a catalyst such as palladium or platinum is invariably required to increase its reaction rate and thus lower cost.”

A trio of AI researchers at Google’s Google DeepMind, working with a colleague from the University of Toronto, report that the AI algorithm Dreamer can learn to self-improve by mastering Minecraft in a short amount of time. In their study published in the journal Nature, Danijar Hafner, Jurgis Pasukonis, Timothy Lillicrap and Jimmy Ba programmed the AI app to play Minecraft without being trained and to achieve an expert level in just nine days.

Over the past several years, computer scientists have learned a lot about how can be used to train AI applications to conduct seemingly intelligent activities such as answering questions. Researchers have also found that AI apps can be trained to play games and perform better than humans. That research has extended into , which may seem to be redundant, because what could you get from a computer playing another computer?

In this new study, the researchers found that it can produce advances such as helping an AI app learn to improve its abilities over a short period of time, which could give robots the tools they need to perform well in the real world.

1. Non-selective neurons, which respond to both pain and itch stimuli indiscriminately.

2. Stimulus-specific neurons, which were selectively activated by either pain or itch stimuli.

Furthermore, using the dual-eGRASP technique—an advanced synaptic analysis method the research team discovered that stimulus-specific neurons in the ACC receive distinct synaptic inputs from the mediodorsal thalamus (MD). This finding indicates that pain and itch are processed by independent neuronal populations within the ACC, which receive differentiated synaptic inputs, providing fundamental insights into the neural mechanisms of pain and itch processing.

To further confirm the role of these neurons, the team used chemogenetic techniques to selectively deactivate either pain-specific or itch-specific neurons. The results showed suppressing pain neurons reduced pain perception without affecting itch, and vice versa. This discovery suggests that these neurons play a direct role in shaping how we experience pain and itch.


A research team have uncovered the neural mechanisms underlying the processing of pain and itch in the anterior cingulate cortex (ACC). This study provides new insights into how the brain distinguishes between these two distinct sensory experiences.

Pain and itch are both unpleasant sensations, but they trigger different responses—pain often prompts withdrawal, while itching leads to scratching. Until now, scientists have struggled to understand how the brain processes these sensations separately, as they share overlapping neural pathways from the spinal cord to the brain.

How microglia facilitate phagocytosis of multiple types of pathological particles.

The functions, and molecular signaling of elevated glycoprotein non-metastatic melanoma B (GPNMB) in various brain diseases is not been well studied.

The researchers report that GPNMB expression in microglia is commonly induced by multiple types of pathological factors (neuronal degeneration caused by seizures, caspase-3-induced neuronal apoptosis, neuronal debris, and β-amyloid) functionally participating in phagocytosis of pathological particles via interaction with lysosomal vacuolar-type proton ATPase catalytic subunit A (ATP6V1A) and anti-inflammation responses.

GPNMB depletion does not influence the severity of acute seizures but exacerbates the development of chronic epileptogenesis. https://sciencemission.com/microglia-phagocytosis-of-pathological-particles


Liu et al. report that GPNMB expression in microglia is commonly induced by multiple types of pathological factors functionally participating in phagocytosis of pathological particles via interaction with ATP6V1A and anti-inflammation responses. GPNMB depletion does not influence the severity of acute seizures but exacerbates the development of chronic epileptogenesis.

Qwake Technologies is working with the Department of Homeland Security to test out the device in a real-world environment. 80 fire departments across the country will receive the device to test out. Austin Fire Department and Round Rock Fire Department are both part of this program.

So far, ten of the eighty departments have gotten the technology. Each C-Thru costs about $8,500, which Cossman said is less than the current generation of walkie-talkies used by many departments. The devices are not currently for sale.

“It is the first iPhone for the fire industry. Like this is a watershed moment,” Cossman said.

Don’t judge space junk’s potential for destruction using your Earthly instincts: Traveling at tens of thousands of miles per hour in space, even a small object has the potential to inflict major damage. In one incident that demonstrates that fact of physics, a 2mm piece of space once junk put a 5cm-wide dent in a climate satellite. A modest move up the scale brings much more power: “A one-centimeter piece of debris has the energy of a hand grenade,” ESA’s Tiago Soares told DW.

In an ominous 2009 incident, a Russian Cosmos satellite collided with an Iridium satellite, creating a cloud of about 2,000 pieces of junk measuring 10cm or more. That’s brings us to the nightmare scenario that should fill you with dread: The Kessler Effect. Imagine an initial major impact that creates hundreds of shards, which then start colliding with more orbiting objects, setting off a chain reaction. Actually, you don’t need your imagination. While some scientists say it wasn’t fully accurate in depicting the physics, Hollywood ventured to depict the Kessler Effect in the 2013 movie, Gravity: