Toggle light / dark theme

The prefrontal cortex is critical for working memory, over a timescale of seconds. In this Review, Miller and Constantinidis examine how the prefrontal cortex facilitates the integration of memory systems across other timescales as well. In this framework of prefrontal learning, short-term memory and long-term memory interact to serve goal-directed behaviour.

In the post on the Chinese room, while concluding that Searle’s overall thesis isn’t demonstrated, I noted that if he had restricted himself to a more limited assertion, he might have had a point, that the Turing test doesn’t guarantee a system actually understands its subject matter. Although the probability of humans being fooled plummets as the test goes on, it never completely reaches zero. The test depends on human minds to assess whether there is more there than a thin facade. But what exactly is being assessed?

I just finished reading Melanie Mitchell’s Artificial Intelligence: A Guide for Thinking Humans. Mitchell recounts how, in recent years, deep learning networks have broken a lot of new ground. Such networks have demonstrated an uncanny ability to recognize items in photographs, including faces, to learn how to play old Atari games to superhuman levels, and have even made progress in driving cars, among many other things.

But do these systems have any understanding of the actual subject matter they’re dealing with? Or do they have what Daniel Dennett calls “competence without comprehension”?

In our Founder Interview series, we highlight the brightest minds in preventive health, wellness, and longevity. In Episode 6, we’re honored to feature Dr. Emil Kenziorra, founder and CEO at Tomorrow Biostasis —one of the world-leading human cryopreservation experts.

Tell us a little about yourself and your current venture

Doctor and researcher by training, entrepreneur by trade. Longevity has always been my motivation, with a focus on maximal life span extension. I’m running Tomorrow.bio and the non-profit European Biostasis Foundation to push human cryopreservation forward.

A research team has developed the world’s first next-generation betavoltaic cell by directly connecting a radioactive isotope electrode to a perovskite absorber layer. By embedding carbon-14-based quantum dots into the electrode and enhancing the perovskite absorber layer’s crystallinity, the team achieved both stable power output and high energy conversion efficiency.

The work is published in the journal Chemical Communications. The team was led by Professor Su-Il In of the Department of Energy Science & Engineering at DGIST.

The newly developed technology offers a stable, long-term power supply without the need for recharging, making it a promising next-generation energy solution for fields requiring long-term power autonomy, such as , , and military applications.