Toggle light / dark theme

Innsbruck physicists have presented a new architecture for improved quantum control of microwave resonators. In a study recently published in PRX Quantum, they show how a superconducting fluxonium qubit can be selectively coupled and decoupled with a microwave resonator and without additional components. This makes potentially longer storage times possible.

Microwave resonators are considered a promising building block for the development of robust quantum computers, as they store quantum information in more complex states. This simplifies and allows significantly longer storage times.

“The storage time of of these microwave resonators has so far been limited by undesirable interactions with the used to control them,” explains Gerhard Kirchmair from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

By using antibodies from a human donor with a self-induced hyper-immunity to snake venom, scientists have developed the most broadly effective antivenom to date, which is protective against the likes of the black mamba, king cobra, and tiger snakes in mouse trials. Described in the journal Cell, the antivenom combines protective antibodies and a small molecule inhibitor and opens a path toward a universal antiserum.

How we make has not changed much over the past century. Typically, it involves immunizing horses or sheep with venom from a single snake species and collecting the produced. While effective, this process could result in to the non-human antibodies, and treatments tend to be species and region-specific.

While exploring ways to improve this process, scientists stumbled upon someone hyper-immune to the effects of snake neurotoxins. “The donor, for a period of nearly 18 years, had undertaken hundreds of bites and self-immunizations with escalating doses from 16 species of very lethal snakes that would normally kill a horse,” says first author Jacob Glanville, CEO of Centivax, Inc.

A new study published in Nature Communications shows, for the first time, how heat moves—or rather, doesn’t—between materials in a high-energy-density plasma state.

The work is expected to provide a better understanding of inertial confinement fusion experiments, which aim to reliably achieve fusion ignition on Earth using lasers. How heat flows between a hot plasma and a material’s surface is also important in other technologies, including semiconductor etching and vehicles that fly at hypersonic speeds.

High-energy-density plasmas are produced only at extreme pressures and temperatures. The study shows that interfacial thermal resistance, a phenomenon known to impede in less extreme conditions, also prevents between different materials in a dense, super– state.

Interdisciplinary teams across the Quantum Systems Accelerator (QSA) are using innovative approaches to push the boundaries of superconducting qubit technology, bridging the gap between today’s NISQ (Noisy Intermediate-Scale Quantum) systems and future fault-tolerant systems capable of impactful science applications.

QSA is one of the five United States Department of Energy National Quantum Information Science (QIS) Research Centers, bringing together leading pioneers in (QIS) and engineering across 15 partner institutions.

A superconducting is made from such as aluminum or niobium, which exhibit quantum effects when cooled to very low temperatures (typically around 20 millikelvins, or −273.13° C). Numerous technology companies and research teams across universities and national laboratories are leveraging for prototype scientific computing in this rapidly growing field.

Tesla is ramping up production of its Semi trucks to 50,000 units annually by 2026, while enhancing performance, charging infrastructure, and electrification solutions to support the transition from diesel ## ## Questions to inspire discussion ## Production and Delivery.

🏭 Q: When will Tesla Semi production and deliveries begin? A: Tesla Semi customer deliveries will start in 2026, with production ramping throughout the year to reach a goal of 50,000 units/year at the Nevada plant.

🚚 Q: What are the key features of the new Tesla Semi? A: The Tesla Semi offers 500 mile long range and 300 mile standard range options, with improved mirror design, better sight lines, enhanced aerodynamics, and drop glass for easier driver interaction. Technology and Efficiency.

🔋 Q: How does the new HP battery improve the Tesla Semi? A: The new HP battery is cheaper to manufacture, maintains the same range with less battery energy, and achieves over 7% efficiency improvements, creating a positive feedback loop for cost and weight reduction.

⚡ Q: What is the e-PTO feature in the Tesla Semi? A: The electric power takeoff (EPTO) enables support for longer combinations, more trailer equipment, and helps electrify additional pieces of equipment, facilitating broader industry transition to electric solutions. Charging Infrastructure.

🔌 Q: What charging solutions is Tesla developing for the Semi? A: Tesla is building a publicly available charging network with 46 sites along truck routes and in major industrial areas, including stations at truck stops, to ensure low-cost, reliable, and available charging for every semi.

For decades, neuroscientists have developed mathematical frameworks to explain how brain activity drives behavior in predictable, repetitive scenarios, such as while playing a game. These algorithms have not only described brain cell activity with remarkable precision but also helped develop artificial intelligence with superhuman achievements in specific tasks, such as playing Atari or Go.

Yet these frameworks fall short of capturing the essence of human and animal behavior: our extraordinary ability to generalize, infer and adapt. Our study, published in Nature late last year, provides insights into how in mice enable this more complex, intelligent behavior.

Unlike machines, humans and animals can flexibly navigate new challenges. Every day, we solve new problems by generalizing from our knowledge or drawing from our experiences. We cook new recipes, meet new people, take a new path—and we can imagine the aftermath of entirely novel choices.

Scientists at the University of East Anglia (UEA) have developed a new way of uncovering the “true age” of a heart using MRI.

Research accepted for publication European Heart Journal Open shows how an MRI scan can reveal your heart’s functional age—and how unhealthy lifestyles can dramatically accelerate this figure. The paper is titled “Cardiac MRI Markers of Ageing: A Multicentre, Cross-sectional Cohort Study.”

It is hoped that the findings could transform how heart disease is diagnosed—offering a lifeline to millions by catching problems before they become deadly.