Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

World’s first AI art museum to explore ‘creative potential of machines’ in LA

Dataland co-founder Refik Anadol, 38, is a media artist whose “crowd-pleasing – and controversial” works using artificial intelligence have been displayed around the world, including at the Museum of Modern Art in New York, the Serpentine and, most recently, the United Nations headquarters.

In the past two years, Anadol has found himself at the center of debates over the value of AI-generated art, as crowds have been reportedly “transfixed” by his massive interactive digital canvases, while some art critics have panned them as over-hyped and mediocre.

Now Anadol is looking to build artists like himself a permanent exhibition space among some of LA’s most prominent high-culture venues, and he is pledging that the AI art museum will promote “ethical AI” and use renewable energy sources.

Lifting the veil of topological censorship

The authors of the theoretical work say in their paper, Our work addresses the question: ‘Where does the, famously quantized, charge current flow in a Chern insulator?’

This question received considerable attention in the context of the quantum Hall effect, but the progress there has been hampered by the lack of local probes, and no consensus has emerged so far. The fundamental problem is the following: topological protection is excellent at hiding local information (such as the spatial distribution of the current),—a phenomenon that we call topological censorship.

Two recent experiments, which used local probes to determine the spatial current distribution in Chern insulator heterostructures (Bi, Sb)2Te3, have remedied the dearth of experimental data in the case of the anomalous quantum Hall effect. These experiments reached unexpected, albeit very different, conclusions. Here, we provide the theory explaining one of these experiments.

Ultra-high speed camera for molecules: Attosecond spectroscopy captures electron transfer dynamics

In nature, photosynthesis powers plants and bacteria; within solar panels, photovoltaics transform light into electric energy. These processes are driven by electronic motion and imply charge transfer at the molecular level. The redistribution of electronic density in molecules after they absorb light is an ultrafast phenomenon of great importance involving quantum effects and molecular dynamics.

Shrinking augmented reality displays into eyeglasses to expand their use

Augmented reality (AR) takes digital images and superimposes them onto real-world views. But AR is more than a new way to play video games; it could transform surgery and self-driving cars. To make the technology easier to integrate into common personal devices, researchers report in ACS Photonics how to combine two optical technologies into a single, high-resolution AR display. In an eyeglasses prototype, the researchers enhanced image quality with a computer algorithm that removed distortions.

Rare Earth Metals Found in Extinct Volcanoes Could Power The Future

Extinct volcanoes are hard to study – we never see them erupt. Using a unique experimental technique, we were able to recreate a certain type of extinct volcano in a lab, learning more about the magma these volcanoes produce.

We found that some rare magma types are surprisingly efficient at concentrating rare earth elements. This is a group of metals with crucial applications in several high-tech industries, such as magnets for electric vehicles and wind turbines.

Demand for rare earths is soaring as society moves away from fossil fuels and electrifies energy production and transport. Despite the name, rare earths aren’t particularly rare. The biggest challenge is finding rocks in which these metals are concentrated enough to be economically viable to extract.