Menu

Blog

Page 15

Sep 29, 2024

Overcoming Treatment Challenges in Multiple Myeloma: Bispecific Antibodies and CAR T-Cell Therapy

Posted by in category: biotech/medical

Immunotherapies are the cornerstone of treatment for multiple myeloma (MM), demonstrating clinically meaningful improvements in response rates and progression-free survival (PFS) through the use of more precise, targeted therapies.


Experts discuss immunotherapy advancements and challenges of resistance, efficacy, and toxicity in patient management.

Sep 29, 2024

The Two Faces of Space-Time

Posted by in category: physics

A mysterious phenomenon known as duality often leads to new discoveries in physics. This time, space-time itself can sometimes be two things at once.

Sep 29, 2024

Substance Painted On Nasrallah’s Hand Helped Israel In Tracking Him: Report

Posted by in category: futurism

“A man, who originally came from Iran, shook the hand of Hezbollah leader Hassan Nasrallah and managed to smear a substance on him that allowed Israel to track him, according to a media report quoting sources.”


(MENAFN- IANS) Beirut, Sep 30 (IANS) A man, who originally came from Iran, shook the hand of Hezbollah leader Hassan Nasrallah and managed to smear a substance on him that allowed Israel to track him, according to a media report quoting sources.

Due to the fact that the body of the Hezbollah leader was exhumed intact, there are increasing estimates that Nasrallah died as a result of suffocation, in great agony, as reported on Sunday evening by channel 12 News.

Continue reading “Substance Painted On Nasrallah’s Hand Helped Israel In Tracking Him: Report” »

Sep 29, 2024

Light-controlled bioassays could diagnose diseases more easily and cost effectively

Posted by in category: biotech/medical

These OptoAssays allow for the bidirectional, light-induced movement of biomolecules and the reading of test results without the need for additional mechanical washing steps.

An OptoAssay uses a sender and a receiver area, which are brought into contact by adding the test reagent. In the sender area, there is a special protein that reacts to light. This protein can either bind or release specific molecules, depending on the type of light it captures.

When an LED emits at a wavelength of 660 nanometers, the molecules bind to the protein. Upon switching to far-red light with a wavelength of 740 nanometers, the molecules detach from the protein. In the receiver area, there are antibodies specifically designed to recognize and capture the target protein in the test reagent.

Sep 29, 2024

Nonlinear optical metasurface achieves electrically tunable third-harmonic generation

Posted by in category: biotech/medical

A recent study has unveiled a transformative nonlinear optical metasurface technology. This new technology, characterized by structures smaller than the wavelength of light, paves the way for significant advancements in next-generation communication technologies, including quantum light sources and medical diagnostic devices.

Sep 29, 2024

From branches to loops: The physics of transport networks in nature

Posted by in category: physics

An international team of researchers described how loops, crucial for the stability of such networks, occur in transport networks found in nature. The researchers observed that when one branch of the network reaches the system’s boundary, the interactions between the branches change drastically. Previously repelling branches begin to attract each other, leading to the sudden formation of loops.

Sep 29, 2024

Smashing heavy ions together could produce the world’s strongest electric fields

Posted by in category: physics

Lab experiments around the globe that are gearing up to recreate the mysterious phase of matter found in the early universe could also produce the world’s strongest electromagnetic fields, according to a theoretical analysis by a RIKEN physicist and two colleagues. This unanticipated bonus could enable physicists to investigate entirely new phenomena.

Sep 29, 2024

Exploiting quantum squeezing to enhance precision of measurements in systems with multiple factors

Posted by in categories: innovation, quantum physics

“The research aims to better understand how quantum squeezing can be used in more complicated measurement situations involving the estimation of multiple phases,” said Le. “By figuring out how to achieve the highest level of precision, we can pave the way for new technological breakthroughs in quantum sensing and imaging.”

The study looked at a situation where a three-dimensional magnetic field interacts with an ensemble of identical two-level quantum systems. In ideal cases, the precision of the measurements can be as accurate as theoretically possible. However, earlier research has struggled to explain how this works, especially in real-world situations where only one direction achieves full quantum entanglement.

This research will have broad implications. By making quantum measurements more precise for multiple phases, it could significantly advance various technologies. For example, quantum imaging could produce sharper images, quantum radar could detect objects more accurately, and could become even more precise, improving GPS and other time-sensitive technologies.

Sep 29, 2024

Discovering quasiparticles ejected from color centers in diamond crystals

Posted by in category: futurism

A research group led by University of Tsukuba has observed the cooperative behavior of polaron quasiparticles formed by the collective interaction of electrons and lattice vibrations around color centers in diamond crystals.

Sep 29, 2024

Inverse-design method enhances performance and reliability of on-chip spectrometers

Posted by in categories: computing, innovation

In a study published in Engineering, researchers from Nanjing University of Aeronautics and Astronautics and Zhejiang University have unveiled a pioneering approach to designing on-chip computational spectrometers, heralding a new era of high-performance and reliable integrated spectrometers. This innovative inverse-design methodology offers a dramatic leap forward in spectrometer technology, addressing longstanding challenges in performance and reproducibility.

Page 15 of 11,786First1213141516171819Last