Researchers have made a significant step in the study of a new class of high-temperature superconductors: creating superconductors that work at room pressure. That advance lays the groundwork for deeper exploration of these materials, bringing us closer to real-world applications such as lossless power grids and advanced quantum technologies.
Superconductivity, the ability of certain materials to conduct electricity with zero resistance, typically occurs at extremely low temperatures, or in some cases, under high pressures. For decades, researchers have focused on a class of materials called cuprates, known for their ability to achieve superconductivity at relatively high temperatures.
About five years ago, a team of researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University discovered superconductivity in nickelates, materials chemically similar to cuprates—and last summer, another group of researchers reported superconductivity in a new class of nickel oxides at temperatures comparable to cuprates.