Toggle light / dark theme

Deep in the swamps of the American Southeast stands a quiet giant: the bald cypress (Taxodium distichum). These majestic trees, with their knobby “knees” and towering trunks, are more than just swamp dwellers—they’re some of the oldest living organisms in Eastern North America. Some have been around for more than 2,500 years, quietly thriving in nutrient-poor, flooded forests where most other trees would wither.

But life isn’t easy for these ancient . They’re under siege from a variety of threats: rising seas, insect infestations, wildfires and increasingly erratic weather patterns. Unlike most animals, trees generally don’t die of old age—they succumb to the stresses around them.

A study by Florida Atlantic University, in collaboration with Lynn University, the University of Georgia, the Georgia Department of Natural Resources, and the Georgia Museum of Natural History, reveals how dramatic shifts in climate can have long-lasting effects on even the toughest, most iconic trees—and offers a glimpse into the powerful forces that shape our natural world.

ODIA has the unique opportunity to host a defense briefing regarding the space industry in Oklahoma…with a twist. The Catalyst Accelerator & The University of Tulsa is putting on a Government Business Boot Camp for Oklahoma-based startups the first two weeks in June. ODIA will have an opportunity to hear an abbreviated pitch from each person in the program from 3:00 — 3:50 pm.

This study investigated neurodegeneration in MOGAD, independent of relapses, by comparing clinical, cognitive, and advanced MRI markers in MOGAD, relapsing-remitting MS, and healthy control.


Progression independent of relapse activity (PIRA) is a novel clinical concept in multiple sclerosis (MS) that describes an insidious, persistent disability accrual not related to attacks,1 occurring not only in progressive MS phenotypes but also in the early disease and relapsing-remitting phases (RRMS).1,2 PIRA seems to reflect the presence of chronic smoldering inflammation and subsequent neurodegenerative pathobiological processes in MS.2,3 Cognitive decline independent of relapse activity (cognitive PIRA) can be a sensitive measure of neurodegeneration in MS, even independent of clinical worsening,4,5 and in other neurodegenerative conditions.6,7 Longitudinal structural MRI (sMRI) brain volume loss, measured using MRI scans at different intervals, is a marker of progressive neuroaxonal loss and atrophy and has been used to assess treatment efficacy in MS.8–11 White matter atrophy involves myelin and axonal loss, often caused by Wallerian degeneration. Gray matter atrophy is widespread, affecting areas such as the neocortex, thalamus, hippocampus, and cerebellum, and is mainly due to neuroaxonal loss and neuronal shrinkage rather than demyelination.12–14

Diffusion-weighted imaging (dMRI) is an advanced MRI approach allowing the evaluation of the microstructural brain tissue damage. Neurite orientation dispersion and density imaging (NODDI) is a water-diffusion model, which can interpret changes within one of the three compartments: intra-axonal (neurite density index—NDI), extraneurite (ODI), and free water (isotropic volume fraction—ISOVF).15 The histopathologic validation studies on the NODDI model have shown significant correlations between the ODI and circular variance, a marker of neurite orientation variability, as well as between ODI and myelin staining fraction in MS samples.16 Negative correlations were observed between the NDI and circular variance in healthy controls (HCs) and positive correlations between NDI and markers of myelin, axon, and microglia content.

IN A NUTSHELL 🔬 Japanese scientists have developed a groundbreaking technique using quantum mechanics to analyze plasma turbulence. 📊 The new method, called multi-field singular value decomposition, provides clearer insights into the interactions within fusion plasmas. 🌊 The research has implications beyond plasma physics, potentially impacting fields like weather dynamics and social systems. 🔍 By

The harsh interstellar environment ought to destroy these carbon-rich molecules; experiments reveal their secret weapon.

Organic molecules called polycyclic aromatic hydrocarbons (PAHs) populate interstellar space and represent a major reservoir of carbon, an essential element for life. The smallest of these molecules mysteriously survive the harsh environment of space, and a research team has now explained how they do it [1]. In experiments in space-like conditions, the team showed that the molecules can use a process called recurrent fluorescence to shed some of the potentially destructive vibrational energy they receive from ultraviolet photons and molecular collisions. The results will help theorists model the dissemination of the building blocks of life throughout the cosmos.

PAHs form in dying stars and get ejected via supernovae into the interstellar medium. In 2021 they were detected in cold interstellar clouds (molecular clouds), and the JWST observatory has since confirmed widespread evidence for small PAHs at higher abundance than models predict. Small PAHs somehow survive ultraviolet radiation, molecular collisions, and other processes that trigger internal vibrations that can tear them apart.