Toggle light / dark theme

Theories of computation and theories of the brain have close historical interrelations, the best-known examples being Turing’s introspective use of the brain’s operation as a model for his idealized computing machine (Turing 1936), McCulloch’s and Pitts’ use of ideal switching elements to model the brain (McCulloch and Pitts 1943), and von Neumann’s comparison of the logic and physics of both brains and computers (von Neumann 1958).

Nanomaterials, with their distinctive physical and chemical properties, hold significant promise for revolutionizing the housing construction industry. By enabling the development of stronger, more durable, efficient, and sustainable structures, nanotechnology offers solutions to challenges such as climate change and global urbanization.

The use of nanomaterials in construction began in the mid-1980s with the advent of carbon-based structures. Since then, their application has become more widespread, driving innovations in the sector. Today, advances in nanotechnology are leading to the creation of increasingly sophisticated, selective, and efficient nanomaterials, broadening the scope of construction capabilities.

This study explored the application of various nanomaterials—titanium dioxide, carbon nanotubes (CNTs), nanosilica, nanocellulose, nanoalumina, and nanoclay—in residential construction. These materials were chosen for their potential to enhance the structural integrity, thermal performance, and overall functionality of building materials used in housing.

Biological neural networks demonstrate complex memory and plasticity functions. This work proposes a single memristor based on SrTiO3 that emulates six synaptic functions for energy efficient operation. The bio-inspired deep neural network is trained to play Atari Pong, a complex reinforcement learning task in a dynamic environment.