Toggle light / dark theme

The full collection of top quark mass measurements by the CMS experiment! 🗝

What’s the best way to pin down the exact mass of this enigmatic particle? Discover the diverse strategies perfected by CMS over the last decade:


When it comes to top quark mass measurements, the CMS collaborati on has the largest and most complete collection of publication-quality results, cov ering a wide range of methods and approaches. In a recent review paper, an overview is given of all top quark mass measurements published by CMS so far. In the quest to pin down the exact mass of this enigmatic particle, different methods were developed and perfected over the last decade.

🧬🔬🐁


The effects of aging on the immune system

The aging immune system is associated with reduced lymphopoiesis, increased inflammation, and myeloid diseases due to alterations in self-renewing HSCs. During childhood, bal-HSCs predominate, thereby facilitating lymphopoiesis and adaptive immune responses.

Age increases my-HSCs, which reduces lymphopoiesis and enhances myelopoiesis. Myeloid-HSC origin and possible interconversions are unclear; however, removing my-HSCs in aged mice may reverse the aging phenotype.

Alzheimer’s is the most common form of dementia, affecting an estimated 6.7 million people in the US. Researchers seeking an effective treatment for the affliction have, over the last 30 years, focused their efforts on a protein known as amyloid beta (A-beta), which form clumps in the brain.

These clumps of A-beta proteins attack nerve cells, resulting initially in short-term memory impairment and later in the loss of judgment, language and thought processes.

Other researchers have previously developed an antibody which can identify and attach itself to A-beta proteins and delay the progression of Alzheimer’s in patients with early-to-mild cognitive impairment by up to 36%.

Computer simulations are giving us new insight into the riotous behavior of cannibal neutron stars.

When a neutron star slurps up material from a close binary companion, the unstable thermonuclear burning of that accumulated material can produce a wild explosion that sends X-radiation bursting across the Universe.

How exactly these powerful eruptions evolve and spread across the surface of a neutron star is something of a mystery. But by trying to replicate the observed X-ray flares using simulations, scientists are learning more about their ins and outs – as well as the ultra-dense neutron stars that produce them.

Diodes, also known as rectifiers, are a basic component of modern electronics. As we work to create smaller, more powerful and more energy-efficient electronic devices, reducing the size of diodes is a major objective. Recently, a research team from the University of Georgia developed the world’s smallest diode using a single DNA molecule. This diode is so small that it cannot be seen by conventional microscopes.

A diode is an electrical device that allows current to move through it in one direction much more easily than the other. No diode prevents 100% of current flow in one direction while allowing unlimited current in the other direction—in reality, a diode will always allow some current in both the “forward” and “backward” directions. The larger the imbalance favoring the “forward” direction, however, the better diode we have. Diodes are responsible for controlling the current in many common electronic components. Millions of diodes are embedded in a single silicon chip, and to increase the processing power of these chips, the diodes need to be made smaller.

Following a prediction originally made in 1965 by Intel co-founder Gordon Moore, now known as Moore’s law, scientists and engineers have been able to make smaller and smaller computer hardware by doubling the number of electronic components in a silicon chip every 18 months. These improvements in computing power are approaching the physical limits of silicon, however; when silicon components are too small, they will become unstable and their performance unpredictable.