Menu

Blog

Page 14

Dec 11, 2024

Key plasma proteins signal critical periods in brain aging

Posted by in categories: life extension, neuroscience

In a recent study published in the journal Nature Aging, researchers identified plasma proteomic biomarkers and dynamic changes associated with brain aging, leveraging a multimodal approach combining brain age gap (BAG) and proteome-wide association analysis.

Background

The global aging population is expected to exceed 1.5 billion individuals aged 65 and above by 2050, highlighting the urgent need to address aging-associated challenges.

Dec 11, 2024

Cas9-PE system achieves precise editing and site-specific random mutation in rice

Posted by in categories: bioengineering, biotech/medical, food, genetics

Achieving the aggregation of different mutation types at multiple genomic loci and generating transgene-free plants in the T0 generation is an important goal in crop breeding. Although prime editing (PE), as the latest precise gene editing technology, can achieve any type of base substitution and small insertions or deletions, there are significant differences in efficiency between different editing sites, making it a major challenge to aggregate multiple mutation types within the same plant.

Recently, a collaborative research team led by Li Jiayang from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Science, developed a multiplex gene editing tool named the Cas9-PE system, capable of simultaneously achieving precise editing and site-specific random mutagenesis in rice.

By co-editing the ALSS627I gene to confer resistance to the herbicide bispyribac-sodium (BS) as a selection marker, and using Agrobacterium-mediated transient transformation, the researchers also achieved transgene-free gene editing in the T0 generation.

Dec 11, 2024

Neutrino that can be most energetic detected by underwater observatory

Posted by in categories: particle physics, space

Neutrino astronomy enters a new era as ARCA tracks an ultra-high-energy particle, potentially the most powerful ever.


The ARCA observatory detects potentially the most energetic neutrino, opening new frontiers in neutrino astronomy and cosmic event studies.

Continue reading “Neutrino that can be most energetic detected by underwater observatory” »

Dec 11, 2024

How healthy plant-based diets enhance strength and function in aging adults

Posted by in category: life extension

A study links healthy plant-based diets to improved physical performance and strength in aging adults, emphasizing diet quality over quantity.

Dec 11, 2024

Our Solar System’s Orbits May Have Been Arranged by an Invading Planet

Posted by in category: space

The orbits of the planets around the Sun have been the source for many a scientific debate. Their current orbital properties are well understood but the planetary orbits have evolved and changed since the formation of the Solar System.

Planetary migrations have been the most prominent idea of recent decades suggesting that planetary interactions caused the young planets to migrate inwards or outwards from their original positions.

Now a new theory suggests a 2–50 Jupiter-mass object passing through the Solar System could be the cause.

Dec 11, 2024

Rethinking the quantum chip: Engineers present new design for superconducting quantum processor

Posted by in categories: computing, engineering, quantum physics

Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands.

Unlike the typical quantum chip design that lays the information-processing qubits onto a 2D grid, the team from the Cleland Lab has designed a modular quantum processor comprising a reconfigurable router as a central hub. This enables any two qubits to connect and entangle, where in the older system, qubits can only talk to the qubits physically nearest to them.

“A quantum computer won’t necessarily compete with a classical computer in things like memory size or CPU size,” said UChicago PME Prof. Andrew Cleland.

Dec 11, 2024

Cosmic rays’ vast energy traced to magnetic turbulence

Posted by in categories: cosmology, particle physics

Ultra-high energy cosmic rays, which emerge in extreme astrophysical environments—like the roiling environments near black holes and neutron stars—have far more energy than the energetic particles that emerge from our sun. In fact, the particles that make up these streams of energy have around 10 million times the energy of particles accelerated in the most extreme particle environment on earth, the human-made Large Hadron Collider.

Where does all that energy come from? For many years, scientists believed it came from shocks that occur in extreme astrophysical environments—when, for example, a star explodes before forming a black hole, causing a huge explosion that kicks up particles.

That theory was plausible, but, according to new research published in The Astrophysical Journal Letters, the observations are better explained by a different mechanism. The source of the cosmic rays’ energy, the researchers found, is more likely magnetic turbulence. The paper’s authors found that magnetic fields in these environments tangle and turn, rapidly accelerating particles and sharply increasing their energy up to an abrupt cutoff.

Dec 11, 2024

Scientists develop cost-effective lasers for extended short-wave infrared applications

Posted by in categories: chemistry, computing, quantum physics

Current laser technologies for the extended short-wave infrared (SWIR) spectral range rely on expensive and complex materials, limiting their scalability and affordability. To address these challenges, ICFO researchers have presented a novel approach based on colloidal quantum dots in an Advanced Materials article. The team managed to emit coherent light (a necessary condition to create lasers) in the extended SWIR range with large colloidal quantum dots made of lead sulfide (PbS).

This new CQD-based technology offers a solution to the aforementioned challenges while maintaining compatibility with silicon CMOS platforms (the technology used for constructing integrated circuit chips) for on-chip integration.

Their PbS colloidal quantum dots are the first semiconductor lasing material to cover such a broad wavelength range. Remarkably, the researchers accomplished this without altering the dots’ chemical composition. These results pave the way towards the realization of more practical and compact lasers.

Dec 11, 2024

Scientists develop coating for enhanced thermal imaging through hot windows

Posted by in categories: chemistry, security, surveillance

A team of Rice University scientists has solved a long-standing problem in thermal imaging, making it possible to capture clear images of objects through hot windows. Imaging applications in a range of fields—such as security, surveillance, industrial research and diagnostics—could benefit from the research findings, which were reported in the journal Communications Engineering.

“Say you want to use to monitor in a high-temperature reactor chamber,” said Gururaj Naik, an associate professor of electrical and computer engineering at Rice and corresponding author on the study. “The problem you’d be facing is that the thermal radiation emitted by the window itself overwhelms the camera, obscuring the view of objects on the other side.”

A possible solution could involve coating the window in a material that suppresses thermal light emission toward the camera, but this would also render the window opaque. To get around this issue, the researchers developed a coating that relies on an engineered asymmetry to filter out the thermal noise of a hot window, doubling the contrast of thermal imaging compared to conventional methods.

Dec 11, 2024

Prototype network achieves seamless all-light mobile communication across air, land and sea

Posted by in categories: robotics/AI, sustainability

Researchers at Lawrence Livermore National Laboratory (LLNL) have developed a new approach that combines generative artificial intelligence (AI) and first-principles simulations to predict three-dimensional atomic structures of highly complex materials.

This research highlights LLNL’s efforts in advancing machine learning for materials science research and supporting the Lab’s mission to develop innovative technological solutions for energy and sustainability.

The study, recently published in Machine Learning: Science and Technology, represents a potential leap forward in the application of AI for materials characterization and inverse design.

Page 14 of 12,160First1112131415161718Last