Toggle light / dark theme

Using the Gran Telescopio Canarias (GTC) and the Apache Point Observatory (APO), an international team of astronomers has detected 19 pulsation modes in an ultra-massive white dwarf known as WD J0135+5722. The discovery, presented on the arXiv preprint server, makes WD J0135+5722 the richest pulsating ultra-massive white dwarf known to date.

White dwarfs (WDs) are stellar cores left behind after a star has exhausted its nuclear fuel. Due to their high gravity, they are known to have atmospheres of either pure hydrogen or pure helium. However, a small fraction of WDs shows traces of heavier elements.

In pulsating WDs, luminosity varies due to non-radial gravity wave pulsations within these objects. One subtype of pulsating WDs is known as DAVs, or ZZ Ceti stars—these are WDs of spectral type DA, having only hydrogen absorption lines in their spectra.

Cornell scientists have developed a novel technique to transform symmetrical semiconductor particles into intricately twisted, spiral structures—or “chiral” materials—producing films with extraordinary light-bending properties.

The discovery, detailed in a paper in the journal Science, could revolutionize technologies that rely on controlling light polarization, such as displays, sensors and optical communications devices.

Chiral materials are special because they can twist light. One way to create them is through exciton-coupling, where light excites nanomaterials to form excitons that interact and share energy with each other. Historically, exciton-coupled chiral materials were made from organic, carbon-based molecules. Creating them from inorganic semiconductors, prized for their stability and tunable optical properties, has proven exceptionally challenging due to the needed over nanomaterial interactions.

Skyrmions are nanometer-to micrometer-sized magnetic whirls that exhibit particle-like properties and can be moved efficiently by electrical currents. These properties make skyrmions an excellent system for new types of data storage or computers. However, for the optimization of such devices, it is usually too computationally expensive to simulate the complicated internal structure of the skyrmions.

One possible approach is the efficient simulation of these magnetic spin structures as particles, similar to the simulation of molecules in biophysics. Until now, however, there has been no conversion between time and experimental real time.

In the well-known thought experiment known as the prisoner’s dilemma, one individual has to decide whether to stay silent or talk to the police about their crime based on how they anticipate an accomplice will react. RIKEN researchers have gained insights into how the brain incorporates such predictions about choices made by others into the decision-making process.

Past studies have identified brain structures and circuits involved in predicting and interpreting the behavior of others. However, it was unclear how predictions of others’ behavior influence our choices.

Hiroyuki Nakahara of the RIKEN Center for Brain Science and his team hope to uncover more about this process. “We’re especially interested in understanding how human social capabilities are realized in the human brain,” Nakahara says.

A team of researchers from Universidad Carlos III de Madrid (UC3M) has developed an innovative technique that allows the production of regular oil lenses of uniform size on the surface of water in a simple and reproducible fashion. The technique will facilitate the study of the behavior of oily substances dispersed on water surfaces.

This discovery is crucial for understanding the dispersion of some liquids floating on water and could have many applications in oil spill mitigation and the food and textile industries. The study is published in the journal Physical Review Letters.

The initial discovery, according to the researchers, was the result of an “accident” during the preparation of a routine experiment. “We were trying to coat a water surface with a thin layer of oil, but the result was unexpected: Instead of a uniform film, we obtained a series of identical and very small droplets, which aroused our curiosity,” explains Javier Rodríguez, from UC3M’s Department of Thermal and Fluids Engineering.

A team of physicists and engineers at the University of Colorado Boulder has discovered a new way to measure the orientation of magnetic fields using what may be the tiniest compasses around—atoms.

The group’s findings could one day lead to a host of new quantum sensors, from devices that map out the activity of the human brain to others that could help airplanes navigate the globe. The new study, published in the journal Optica, stems from a collaboration between physicist Cindy Regal and quantum engineer Svenja Knappe.

It reveals the versatility of atoms trapped as vapors, said Regal, professor of physics and fellow at JILA, a joint research institute between CU Boulder and the National Institute of Standards and Technology (NIST).

A research team from Skoltech and ITMO university has obtained tunable polariton emission at room temperature on CsPbBr3 perovskite crystals as a promising platform for integration into lateral microchips—a new concept for the integrated all-optical logic that Skoltech researchers are working on.

The research results are presented in the Advanced Optical Materials journal.

Exciton-polaritons are hybridized states of light and matter, which are formed as a result of strong interaction of optical modes of microcavity—photons—with elementary excitations of a material—excitons.

The role of electrons and their negative charge in electric current is well established. Electrons also exhibit other intrinsic properties that are associated, for example, with considerable potential for enhancing data storage devices: the electron’s spin or magnetic moment.

To date, however, the selection of specific spins has been challenging. It has been difficult to single out only those electrons with an up-direction of spin, for example. One way of doing this would be to pass a current through a ferromagnet, such as iron. This would result in the generation of a current in which the aligns with the direction of the magnetic field.

The alternative option of inducing a current in chiral molecules, i.e., molecules that have no superimposable mirror images, such as helix structures, has been discussed over the past decade. The result is spin polarization of approximately 60–70%, a level similar to that achieved in ferromagnetic materials. However, this approach remains a subject of ongoing debate and research.

People with shorter telomeres — the protective caps at the ends of their chromosomes — may have a higher risk of developing age-related brain diseases such as stroke, dementia, and late-life depression (typically diagnosed at age 60 or older). This finding comes from a preliminary study set to be presented at the American Stroke Association’s International Stroke Conference 2025, a leading global event for stroke and brain health research, taking place in Los Angeles from February 5–7, 2025.

Telomere length in white blood cells (leukocytes), known as leukocyte telomere length, is a well-established marker of biological aging. As people age, telomeres naturally shorten, reducing their ability to protect chromosomes, which accelerates cellular aging and increases vulnerability to age-related diseases. While telomere length is partly determined by genetics, ancestry, and gender, it is also influenced by lifestyle factors and environmental stressors such as diet, exercise, and pollution.