Toggle light / dark theme

Metabolic imaging is a noninvasive method that enables clinicians and scientists to study living cells using laser light, which can help them assess disease progression and treatment responses.

But light scatters when it shines into biological tissue, limiting how deep it can penetrate and hampering the resolution of captured images.

Now, MIT researchers have developed a new technique that more than doubles the usual depth limit of metabolic imaging. Their method also boosts imaging speeds, yielding richer and more detailed images.

This new technique does not require tissue to be preprocessed, such as by cutting it or staining it with dyes. Instead, a specialized laser illuminates deep into the tissue, causing certain intrinsic molecules within the cells and tissues to emit light. This eliminates the need to alter the tissue, providing a more natural and accurate representation of its structure and function.


Apple TV+ is ringing in the New Year by offering an all-access pass to customers all around the world. Enjoy Apple TV+ for free the first weekend of 2025 (January 3 through January 5), Apple TV+ will be free on any device where Apple TV+ is available. All you need is an Apple ID to see what all the buzz is about.

Kick off 2025 by streaming Apple’s acclaimed originals, including buzzy new seasons of “Silo,” “Shrinking” and “Bad Sisters,” the twisty, riveting “Presumed Innocent,” Golden Globe nominees “Slow Horses” and “Disclaimer,” and award-winning hits like “The Morning Show” and “Ted Lasso.” Plus, catch up on global phenomenon “Severance” before its second season debut; get your mind blown by celebrated sci-fi series like “Dark Matter,” “For All Mankind” and “Foundation”; discover movies for the whole family like “Fly Me to the Moon” and “The Family Plan”; and action-packed hit features like “Wolfs” and “The Instigators.”

Decades of research have established that chronic stress—from money worries, job problems, family tensions, or other sources—causes chemical changes in the body. In a new study, researchers have identified biological changes induced by stress that may help explain how it could cause a tumor to spread, or metastasize.


To conduct the study, the researchers used two established methods for modeling stress in mice. One is designed to mimic exposure to constant, low-level, predictable stress. The other simulates intermittent, unpredictable, mild stress.

They used these methods to induce chronic stress in two different mouse models of breast cancer. In both models, when the mice were exposed to stress using either method, they had both larger mammary tumors and more lung metastases than mice not exposed to stress.

But a series of follow-up experiments strongly suggested that this increased tumor growth and metastasis wasn’t being driven by the effects of stress on cancer cells themselves.

Surprisingly, the organoids were still healthy when they returned from orbit a month later, but the cells had matured faster compared to identical organoids grown on Earth—they were closer to becoming adult neurons and were beginning to show signs of specialization. The results, which could shed light on potential neurological effects of space travel, were published on October 23, 2024, in Stem Cells Translational Medicine.

“The fact that these cells survived in space was a big surprise,” says co-senior author Jeanne Loring, PhD, professor emeritus in the Department of Molecular Medicine and founding director of the Center for Regenerative Medicine at Scripps Research. “This lays the groundwork for future experiments in space, in which we can include other parts of the brain that are affected by neurodegenerative disease.”

On Earth, the team used stem cells to create organoids consisting of either cortical or dopaminergic neurons, which are the neuronal populations impacted in multiple sclerosis and Parkinson’s disease—diseases that Loring has studied for decades. Some organoids also included microglia, a type of immune cell that is resident within the brain, to examine the impact of microgravity on inflammation.


After revolutionizing global internet access, Elon Musk’s Starlink is poised to take smartphone connectivity to the next level. The ambitious satellite service will soon enable users to make calls from virtually anywhere on the planet, all without the need for specialized hardware.

Starlink, a division of SpaceX, has announced its plans to introduce Direct-to-Cell, a groundbreaking feature that uses its vast satellite network to allow voice calls on regular smartphones. What sets this apart is its simplicity—there’s no need for modifications to your device. As long as your phone is LTE-compatible, you’re ready to connect.

This innovation could fundamentally change how we think about mobile communication. Imagine being able to make calls from the remotest corners of the Earth—whether you’re deep in a rainforest, sailing in the middle of the ocean, or trekking across deserts—with no cell towers in sight. Starlink’s satellite system makes this scenario entirely possible.

Mount Sinai researchers discovered that harmine, a beta cell regenerative drug, may transform alpha cells into beta cells, offering scalable diabetes treatment options for millions.

Researchers and bioinformaticians at the Icahn School of Medicine at Mount Sinai have unveiled new insights into the mechanisms behind human beta cell regenerative drugs, offering a potential breakthrough for the over 500 million people worldwide living with diabetes. These findings, recently published in Cell Reports Medicine, could mark a significant step forward in diabetes treatment.

Diabetes occurs when pancreatic beta cells lose their ability to produce insulin, a hormone critical for maintaining healthy blood sugar levels. Despite significant advancements, there are still no widely scalable therapeutic solutions capable of addressing the global diabetes crisis.