Toggle light / dark theme

Fast radio bursts (FRBs) represent the most intense radio explosions in the universe. Since the first discovery in 2007, FRBs have garnered significant attention, culminating in the 2023 Shaw Prize in Astronomy. With yet unknown origin, these extreme cosmic bursts are among the most enigmatic phenomena in astronomy as well as physics.

Several similar large, fossilized bone fragments have been discovered in various regions across Western and Central Europe since the 19th century. The animal group to which they belonged is still the subject of much debate to this day. A study carried out at the University of Bonn could now settle this dispute once and for all: The microstructure of the fossils indicates that they come from the lower jaw of a gigantic ichthyosaur. These animals could reach 25 to 30 meters in length, a similar size to the modern blue whale. The results have now been published in the journal PeerJ.

In 1,850, the British naturalist Samuel Stutchbury reported a mysterious find in a scientific journal: A large, cylindrical bone fragment had been discovered at Aust Cliff – a fossil deposit near to Bristol. Similar bone fragments have since been found in various different places around Europe, including Bonenburg in North Rhine-Westphalia and in the Provence region of France. More than 200 million years ago, these areas were submerged beneath a huge ocean that covered vast swathes of Western and Central Europe. Fossil remains from the animal world of that time – including marine and coastal dwellers – have been preserved in the sediment.

There is still some debate to this day about the animal group to which these large, fossilized bones belonged. Stutchbury assumed in his examination of the first finds that they came from a labyrinthodontia, an extinct crocodile-like land creature. However, this hypothesis was questioned by other researchers, who believed instead that the fossils came from long-necked dinosaurs (sauropods), stegosaurs, or a still completely unknown group of dinosaurs.

In a breakthrough that could help revolutionize wireless communication, researchers unveiled a novel method for manipulating terahertz waves, allowing them to curve around obstacles instead of being blocked by them.

While cellular networks and Wi-Fi systems are more advanced than ever, they are also quickly reaching their bandwidth limits. Scientists know that in the near future they’ll need to transition to much higher communication frequencies than what current systems rely on, but before that can happen there are a number of — quite literal — obstacles standing in the way.

Researchers from Brown University and Rice University say they’ve advanced one step closer to getting around these solid obstacles, like walls, furniture, and even people — and they do it by curving light.

Unveiling Chiral Interface States

The chiral interface state is a conducting channel that allows electrons to travel in only one direction, preventing them from being scattered backward and causing energy-wasting electrical resistance. Researchers are working to better understand the properties of chiral interface states in real materials but visualizing their spatial characteristics has proved to be exceptionally difficult.

But now, for the first time, atomic-resolution images captured by a research team at Berkeley Lab and UC Berkeley have directly visualized a chiral interface state. The researchers also demonstrated on-demand creation of these resistance-free conducting channels in a 2D insulator.

As any surfer will tell you, waves pack a powerful punch. We’re now making strides toward harnessing the ocean’s relentless movements for energy, thanks to advancements in “blue energy” technology. In a study published in ACS Energy Letters, researchers discovered that by moving the electrode from the middle to the end of a liquid-filled tube—where the water’s impact is strongest—they significantly boosted the efficiency of wave energy collection.

The tube-shaped wave-energy harvesting device improved upon by the researchers is called a liquid-solid triboelectric nanogenerator (TENG). The TENG converts mechanical energy into electricity as water sloshes back and forth against the inside of the tube. One reason these devices aren’t yet practical for large-scale applications is their low energy output. Guozhang Dai, Kai Yin, Junliang Yan, and colleagues aimed to increase a liquid-solid TENG’s energy harvesting ability by optimizing the location of the energy-collecting electrode.

Voice assistants have already made significant strides in areas such as smart home integration, educational settings and business applications. However, their current capabilities are limited by a lack of robust reasoning and planning abilities.

In fact, just 7.8% of consumers believe voice technology is as smart and reliable as a real person today, according to the PYMNTS Intelligence report “ How Consumers Want to Live in the Voice Economy.”

If we can prove the concept of this technology in the two diseases we’re studying, we can then apply it to hundreds or thousands of diseases of the brain.

Yong-Hui Jiang, MD, PhD

Yes, please. Huntington disease hopefully.


The two-phase grant will support research into a novel CRISPR-based gene-editing technology and delivery platform for targeting neurogenetic diseases.

A MUM who couldn’t sleep due to a “funny” whirring sound in her ear realised she had been hearing symptoms of her cancer after being diagnosed with a brain tumour.

Denise Wingfield, 55, was initially told dull noise in her right ear keeping her up at night was tinnitus, having been referred to an ear, nose and throat specialist.

“The problems arising when interpreting the data from WASP-39b are well known from many other exoplanets — regardless whether they are observed with Kepler, TESS, James Webb, or the future PLATO spacecraft,” said Dr. Nadiia Kostogryz.


While there is currently a myriad of techniques used to both discover exoplanets and calculate their physical characteristics, could other methods be developed to overcome specific data errors? This is what a recent study published in Nature Astronomy hopes to address as an international team of researchers investigated how a star’s magnetic field can be used to ascertain additional data for an exoplanet, which is traditionally done using conventional exoplanet detection methods, specifically the transit detection method. This study holds the potential to help astronomers establish new methods for discovering and characterizing exoplanets throughout the cosmos.

For the transit method, an exoplanet passes in front of its parent star, causing its starlight to slightly decrease and has been instrumental in discovering and characterizing thousands of exoplanets. However, astronomers have also discovered that a star’s limb darkening, which is the observed edge of the star, causes errors in transit light curves for exoplanets, despite using state-of-the-art atmospheric models to predict observations.

For the study, the researchers focused on WASP-39b, which is a gas giant located approximately 700 light-years from Earth and has been studied in great detail using a myriad of space telescopes, and most recently with NASA’s James Webb Space Telescope (JWST). However, astronomers have discovered inconsistencies between models and observations, which this study hopes to overcome.