Toggle light / dark theme

Northwestern Medicine investigators have identified novel mechanisms regulating the development of the spinal column during embryonic development, findings that could inform new treatments for congenital scoliosis and other related birth defects, according to a recent study published in Nature Communications.

The spinal column of all vertebrate species, including humans, is divided into segments (vertebral discs), which give the spine both flexibility and mobility.

During early , these discs develop from specialized cells called somites and are sequentially “sliced” into separate discs, a process driven by a called the vertebrate segmentation clock.

Amplified spontaneous emission is a physical phenomenon that entails the amplification of the light spontaneously emitted by excited particles, due to photons of the same frequency triggering further emissions. This phenomenon is central to the functioning of various optoelectronic technologies, including lasers and optical amplifiers (i.e., devices designed to boost the intensity of light).

The excitation of a material with high-energy photons can produce what is known as an electron-hole . This state is characterized by the dense presence of negatively charged particles (i.e., electrons) and positively charged vacancies (i.e., holes).

Researchers at Wuhan University recently observed amplified spontaneous emission originating from degenerate electron-hole plasma in a 2D semiconductor, namely suspended bilayer tungsten disulfide (WS2). Their paper, published in Physical Review Letters, could pave the way for the development of new optoelectronic technologies based on 2D semiconductors.

A new analysis of 105-year-old data on the effectiveness of “dazzle” camouflage on battleships in World War I by Aston University researchers Professor Tim Meese and Dr. Samantha Strong has found that while dazzle had some effect, the “horizon effect” had far more influence when it came to confusing the enemy.

The findings are published in the journal i-Perception.

During World War I, navies experimented with painting ships with dazzle —geometric shapes and stripes—in an attempt to confuse U-boat captains as to the speed and direction of travel of the ships and make them harder to attack.

Early-life adversity affects more than half of the world’s children and is a significant risk factor for cognitive and mental health problems later in life. In an extensive and up-to-the-minute review of research in this domain, scholars from the University of California, Irvine illuminate the profound impacts of these adverse childhood experiences on brain development and introduce new paths for understanding and tackling them.

Their study, published in Neuron, examines the mechanisms behind the long-term consequences of childhood (). Despite extensive research spanning over seven decades, the authors point out that significant questions remain unanswered. For example, how do adults—from parents to researchers—fully comprehend what is perceived as stressful by an infant or child?

Such conceptual queries, as well as the use of cutting-edge research tools, can provide a road map, guiding experts toward developing innovative methods and providing solutions to this pressing mental health issue.

Researchers at the University of Gothenburg have developed a novel Ising machine that utilizes surface acoustic waves as an effective carrier of dense information flow. This approach enables fast, energy-efficient solutions to complex optimization problems, offering a promising alternative to conventional computing methods based on von-Neumann architecture. The findings are published in the journal Communications Physics.

Traditional computers can stumble when tackling —tasks of scheduling logistic operations, financial portfolio optimization and high frequency trading, optimizing communication channels in complex wireless networks, or predicting how proteins fold among countless structural possibilities.

In these cases, each added node—an additional logistic hub, network user, or molecular bond causes the number of possible configurations to explode exponentially. In contrast to linear or polynomial growth, an exponential increase in the number of possible solutions makes even the most powerful computers and algorithms lack the computational power and memory to evaluate every scenario in search of vanishingly small subsets representing satisfactorily optimal solutions.

For the first time, scientists have acquired direct evidence of rare, pulsing pear-shaped structures within atomic nuclei of the rare-earth element gadolinium, thanks to new research led by the University of Surrey, the National Physical Laboratory (NPL) and the IFIN-HH research institute in Bucharest, Romania.

The study, published in Physical Review Letters, provides definitive proof of a strong collective “octupole excitation” in the nucleus of gadolinium-150, a long-lived radioactive isotope of this rare-earth element, which is used in applications such as superconductors, nuclear power operations and MRI contrast materials.

The experimental signature is interpreted as the protons and neutrons inside the atomic nucleus vibrating in a coordinated pattern, resulting in a pulsing, asymmetric, pear-shaped structure.

The collective motion of bacteria—from stable swirling patterns to chaotic turbulent flows—has intrigued scientists for decades. When a bacterial swarm is confined in small circular space, stable rotating vortices are formed. However, as the radius of this confined space increases, the organized swirling pattern breaks down into a turbulent state.

This transition from ordered to chaotic flow has remained a long-standing mystery. It represents a fundamental question not only in the study of bacterial behavior but also in classical fluid dynamics, where understanding the emergence of turbulence is crucial for both controlling and utilizing complex flows.

In a recent study published in Proceedings of the National Academy of Sciences on March 14, 2025, a research team led by Associate Professor Daiki Nishiguchi from the Institute of Science Tokyo, Japan, has revealed in detail how bacterial swarms transition from organized movement to chaotic flow. Combining large-scale experiments, computer modeling, and , the team observed and explained previously unknown intermediate states that emerge between order and turbulence.

In a comprehensive experimental study, an international team of researchers has confirmed the calculations of a leading turbulence simulation code to an unprecedented degree. This marks a major breakthrough in understanding turbulent transport processes in nuclear fusion devices.

The study has now been published in the journal Nature Communications and lays a crucial foundation for predicting the performance of fusion power plants.

Future fusion power plants aim to generate efficiently by fusing light atomic nuclei. The most advanced approach—magnetic confinement fusion—confines a , a gas heated to millions of degrees Celsius, within a magnetic field. This plasma is suspended without wall contact inside a donut-shaped vacuum chamber.

Researchers have uncovered a surprising phenomenon in the material BiNiO3: when subjected to high pressure at low temperatures, its well-arranged electrical charges are disrupted, leading to a disordered “charge glass” state.

The study is published in the journal Nature Communications.

This discovery offers new insights into how materials respond to , potentially paving the way for new advanced materials with unique and useful properties.