Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

“Unlimited range” stealth ebike never needs plugging in

:3year 2019


If e-bikes tend to look a little ungainly for your tastes, check out this thing from Barcelona’s Nua Bikes. With the motor, sensors and battery built into a discreet hub unit, the Nua Electrica is barely distinguishable from a regular fixie, and its innovative “self-charging” mode means you can get away without ever charging it.

Weighing in at just 13 kg thanks to a full titanium frame, the Nua Electrica is the stealthiest single-speed e-bike we’ve seen to date. It uses a very cool motor/battery combo unit that we suspect we’ll be seeing a lot more of in the coming months and years.

The Zehus Bike+ is an all-in-one hub unit that weighs just 3 kg (6.6 lb) and fits into any frame with a rear wheel dropout 120 mm (4.7 in) or wider. It contains a 250-watt motor, a 160-watt-hour battery, several sensors, a Bluetooth communications system and all the electronics required to run an e-bike.

New device converts plastic waste into fuel using catalyst-free pyrolysis

As tons of plastic waste continue to build up in landfills every day, Yale researchers have developed a way to convert this waste into fuels and other valuable products efficiently and cheaply. The results are published in Nature Chemical Engineering.

Specifically, the researchers are using a method known as pyrolysis, a process of using heat in the absence of oxygen to molecularly break materials down. In this case, it’s used to break plastics down to the components that produce fuels and other products. The study was led by Yale Engineering professors Liangbing Hu and Shu Hu, both members of the Center for Materials Innovation and Yale Energy Sciences Institute.

Conventional methods of pyrolysis often use a to speed up the and achieve a high yield, but it’s a method that comes with significant limitations.

Curved neural networks enable AI memory recall through geometric design

A new international study has introduced Curved Neural Networks—a new type of AI memory architecture inspired by ideas from geometry. The study shows that bending the “space” in which AI “thinks” can create explosive memory recall—an effect similar to a lightbulb moment in the human brain. The research opens new paths for brain-inspired computing, neuroscience, and even next-gen robotics, offering tools to better understand memory itself.

What if could remember things not just well, but faster or more reliably? A new international study has introduced a novel type of AI —one that addresses the challenge not with more data, but with .

A team of researchers from the Basque Center for Applied Mathematics (BCAM), Araya Inc., the University of Sussex, and Kyoto University has developed a new class of AI models called Curved Neural Networks.

Powering up T cells: A new path in cancer immunotherapy

Researchers have discovered a way to make the immune system’s T cells significantly more effective at fighting cancer. By blocking a protein called Ant2, they were able to reprogram how these cells consume and generate energy—essentially rewiring their internal power supply.

This shift makes T cells more active, resilient, and better at attacking tumors. The findings open the door to new treatments that could strengthen the body’s own immune response, offering a smarter, more targeted approach to .

Led by Ph.D. student Omri Yosef and Prof. Michael Berger from the Faculty of Medicine at Hebrew University, in collaboration with Prof. Magdalena Huber of Philipps University of Marburg and Prof. Eyal Gottlieb of the University of Texas MD Anderson Cancer Center, the international team discovered that fine-tuning ’ metabolism dramatically improves their ability to destroy .

Synthetic aperture waveguide holography for compact mixed-reality displays with large étendue

An ultra-thin mixed-reality (MR) display design that is based on a unique combination of waveguide holography and artificial intelligence-driven holography algorithms is demonstrated, creating visually comfortable and perceptually realistic 3D VR experiences in a compact wearable device.

Famous double-slit experiment holds up when stripped to its quantum essentials

MIT physicists have performed an idealized version of one of the most famous experiments in quantum physics. Their findings demonstrate, with atomic-level precision, the dual yet evasive nature of light. They also happen to confirm that Albert Einstein was wrong about this particular quantum scenario.

The experiment in question is the double-slit experiment, which was first performed in 1801 by the British scholar Thomas Young to show how light behaves as a wave. Today, with the formulation of quantum mechanics, the double-slit experiment is now known for its surprisingly simple demonstration of a head-scratching reality: that light exists as both a particle and a wave. Stranger still, this duality cannot be simultaneously observed. Seeing light in the form of particles instantly obscures its wave-like nature, and vice versa.

The original experiment involved shining a beam of light through two parallel slits in a screen and observing the pattern that formed on a second, faraway screen. One might expect to see two overlapping spots of light, which would imply that light exists as particles, a.k.a. photons, like paintballs that follow a direct path. But instead, the light produces alternating bright and dark stripes on the screen, in an interference pattern similar to what happens when two ripples in a pond meet. This suggests light behaves as a wave. Even weirder, when one tries to measure which slit the light is traveling through, the light suddenly behaves as particles and the interference pattern disappears.