Menu

Blog

Page 1379

Apr 10, 2024

Evaluating the Bayesian causal inference model of intentional binding through computational modeling

Posted by in category: computing

Tanaka, T. Evaluating the Bayesian causal inference model of intentional binding through computational modeling. Sci Rep 14, 2,979 (2024). https://doi.org/10.1038/s41598-024-53071-7

Download citation.

Apr 10, 2024

Editorial: Nanotechnologies in Neuroscience and Neuroengineering

Posted by in categories: engineering, health, internet, nanotechnology, neuroscience

2 Department of Neurobiology, Duke University, Durham, NC, United States.

3Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.

4Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.

Apr 10, 2024

Bioecon-(# 023SUPP) NSF-NBIC (2).pdf

Posted by in category: nanotechnology

Nanotechnology and microelectrode convergence of improving human performance.


Shared with Dropbox.

Apr 10, 2024

An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing

Posted by in categories: computing, materials

A reservoir computing system for multimode and multiscale signal processing can be created using optoelectronic synapses that are based on α-In2Se3 and exploit the tightly coupled ferroelectric and optoelectronic properties of the material.

Apr 10, 2024

Organoid intelligence: a new biocomputing frontier

Posted by in category: futurism

A roadmap for the strategic development of organoid intelligence as a scientific discipline.

Apr 10, 2024

Japan demonstrates levitation without using any external power

Posted by in categories: energy, quantum physics

The technology can also be used to devise a range of advanced sensors for everyday use and to advance science. Twamley’s lab uses levitating materials to build oscillators, which can be used to develop ultra-sensitive sensors. Making these oscillators work without using external energy sources can make them easier to deploy, and this is what the research team at OIST set out to do. What they faced was a series of challenges.

The device that OIST researchers aimed for was a ‘frictionless’ platform. However, the system would lose energy over time without an external power source. This is known as ‘eddy damping’ since external forces make an oscillating system lose energy.

The other hurdle to overcome would be minimizing the system’s kinetic energy. This is necessary since it can help improve the system’s sensitivity if it were to be used as a sensor. If the kinetic motion can be further cooled to the quantum realm, it could also open up possibilities of more precision measurements.

Apr 10, 2024

Startup to build massive stadium-sized inflatable space stations

Posted by in category: space travel

These in-space manufacturing modules might provide an alternative to large-scale commercial space stations.

The company aims to launch the first module on a SpaceX rideshare trip in 2026.

Apr 10, 2024

Brain Acidity Linked With Multiple Neurological Disorders

Posted by in categories: biotech/medical, genetics, neuroscience

In a global research effort, scientists have uncovered a relationship between metabolism problems in the brain and a range of neuropsychiatric and neurodegenerative disorders, from autism to Alzheimer’s disease and more.

Despite their diverse symptoms, these conditions – as well as depression, epilepsy, schizophrenia, intellectual disability, and bipolar disorder – all involve a degree of cognitive impairment and often share genetic or metabolic features, hinting at a common biological basis.

The extensive collaboration by the International Brain pH Project Consortium, involving 131 scientists from 105 labs in seven countries, identified changes in brain acidity and lactate levels in animals as key signs of this metabolic dysfunction.

Apr 10, 2024

Masked acid chlorides for proximity labelling of RNA

Posted by in categories: chemistry, mapping

A non-radical proximity labelling platform — BAP-seq — is presented that uses subcellular-localized BS2 esterase to convert unreactive enol-based probes into highly reactive acid chlorides in situ to label nearby RNAs. When paired with click-handle-mediated enrichment and sequencing, this chemistry enables high-resolution spatial mapping of RNAs across subcellular compartments.

Apr 10, 2024

Epsilon-near-zero regime enables permanent ultrafast all-optical reversal of ferroelectric polarization

Posted by in category: futurism

Researchers reveal that naturally emerging epsilon-near-zero conditions in BaTiO3 can be exploited to drive permanent all-optical switching of ferroelectric polarization. The general nature of the epsilon-near-zero regime means that the approach could be used to switch spontaneous order parameters in other systems.