Toggle light / dark theme

Researchers from the High Magnetic Field Center of the Hefei Institutes of Physical Science of the Chinese Academy of Sciences and the University of Science and Technology of China recently introduced the concept of the “Topological Kerr Effect” (TKE). This new concept was developed using the low-temperature magnetic field microscopy system and magnetic force microscopy imaging system available at the steady-state high magnetic field experimental facility.

The findings, published in Nature Physics, hold significant promise for advancing our understanding of topological magnetic structures.

Researchers have stumbled upon a phenomenon that could rewrite our understanding of the universe’s gravitational forces. Known as the “cosmic glitch,” this discovery highlights anomalies in gravity’s behavior on an immense scale, challenging the established norms set by Albert Einstein’s theory of general relativity.

For over a century, general relativity has served as the backbone for our understanding of cosmic phenomena, ranging from the dynamics of the Big Bang to the intricacies of black holes. The theory posits that gravity influences not only the three spatial dimensions but also time itself.

Validated through numerous tests and observations, general relativity has been a robust model that physicists and astronomers worldwide rely on.

Northrop Grumman and Umbra have been awarded small contracts by the Defense Advanced Research Projects Agency (DARPA) to continue to the second phase of a program designed to collect data from radar-equipped satellites flying in formation and develop innovative algorithms to process the data for military applications.

Umbra’s contract under the Distributed Radar Image Foundation Technology (DRIFT) program is for $6 million and will last for six months and Northrop Grumman’s is for $2 million and covers one year, a DARPA spokesperson said.

Join our newsletter to get the latest military space news every Tuesday by veteran defense journalist Sandra Erwin.

The demonstration is a key milestone in the Air Force Research Laboratory’s Defense Experimentation Using Commercial Space Internet, or DEUCSI — a program launched in 2018 to explore augmenting military communications by leveraging the growing commercial satellite internet industry.

DARPA just tested an autonomous tank that could help keep soldiers safe — and even more self-driving military vehicles are on the horizon. If autonomous vehicles prove capable enough for the battlefield, the tech could someday start finding its way over to civilian uses, too.

The challenge: Tanks have played an important role in the US military for more than 100 years, thanks to their tremendous firepower and armor, but every time the Army puts a soldier into a tank and sends them into combat, it’s putting their life at risk.

Even if the tank is never attacked by an enemy, there’s some evidence that simply firing a tank can cause brain damage for the operators inside, potentially leading to problems with cognition and mental health.