Menu

Blog

Page 1331

Nov 20, 2023

NEW STUDY: Discovery of chemical means to reverse aging and restore cellular function

Posted by in categories: biotech/medical, chemistry, life extension

On July 12, 2023, a new research paper was published in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

BUFFALO, NY– July 12, 2023 – In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

On July 12, 2023, researchers Jae-Hyun Yang, Christopher A. Petty, Thomas Dixon-McDougall, Maria Vina Lopez, Alexander Tyshkovskiy, Sun Maybury-Lewis, Xiao Tian, Nabilah Ibrahim, Zhili Chen, Patrick T. Griffin, Matthew Arnold, Jien Li, Oswaldo A. Martinez, Alexander Behn, Ryan Rogers-Hammond, Suzanne Angeli, Vadim N. Gladyshev, and David A. Sinclair from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

Nov 20, 2023

GLS1 inhibitor that selectively removes senescent cells ameliorated age-associated tissue dysfunction and diseases such as arteriosclerosis

Posted by in categories: biotech/medical, life extension

face_with_colon_three year 2021.


UTokyo People NAKANISH Makoto

UTokyo People JOHMURA Yoshikazu

Continue reading “GLS1 inhibitor that selectively removes senescent cells ameliorated age-associated tissue dysfunction and diseases such as arteriosclerosis” »

Nov 20, 2023

AI system self-organizes to develop features of brains of complex organisms

Posted by in categories: biotech/medical, robotics/AI

Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features of the brains of complex organisms in order to solve tasks.

As such as the organize themselves and make connections, they have to balance competing demands. For example, energy and resources are needed to grow and sustain the network in , while at the same time optimizing the network for . This trade-off shapes all brains within and across species, which may help explain why many brains converge on similar organizational solutions.

Jascha Achterberg, a Gates Scholar from the Medical Research Council Cognition and Brain Sciences Unit (MRC CBSU) at the University of Cambridge said, “Not only is the brain great at solving , it does so while using very little energy. In our new work we show that considering the brain’s problem-solving abilities alongside its goal of spending as few resources as possible can help us understand why brains look like they do.”

Nov 20, 2023

Archaeologists uncover Europe’s hidden Bronze Age megastructures

Posted by in category: futurism

Archaeologists from University College Dublin, working with colleagues from Serbia and Slovenia, have uncovered a previously unknown network of massive sites in the heart of Europe that could explain the emergence of the continent’s Bronze Age megaforts—the largest prehistoric constructions seen prior to the Iron Age.

Using and aerial photography to stitch together the prehistoric landscape of the south Carpathian Basin in Central Europe, the team discovered more than 100 sites belonging to a complex society.

Their commonplace use of defensible enclosures was a precursor and likely influence behind the famous hillforts of Europe, built to protect communities later in the Bronze Age.

Nov 20, 2023

OpenAI investors’ race to reinstate Sam Altman makes tech expert Gary Marcus feel ‘sick to his stomach’

Posted by in category: robotics/AI

Marcus says he feels “sick to his stomach” as the OpenAI board—ostensibly in control with an eye on the nonprofit mission—appears to get overpowered.

Nov 20, 2023

Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings

Posted by in categories: biological, neuroscience, robotics/AI

A fundamental question in neuroscience is what are the constraints that shape the structural and functional organization of the brain. By bringing biological cost constraints into the optimization process of artificial neural networks, Achterberg, Akarca and colleagues uncover the joint principle underlying a large set of neuroscientific findings.

Nov 20, 2023

String Theory, Quantum Gravity and Black Holes (Or, Are We Holograms?)

Posted by in categories: cosmology, holograms, quantum physics

Join Brian Greene and Juan Maldacena as they explore a wealth of developments connecting black holes, string theory, quantum gravity, quantum entanglement, wormholes, and the holographic principle.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

Continue reading “String Theory, Quantum Gravity and Black Holes (Or, Are We Holograms?)” »

Nov 20, 2023

Researchers Refute a Widespread Belief About Online Algorithms

Posted by in categories: computing, information science

“It’s really simple to define this problem,” said Marcin Bieńkowski, an algorithms researcher at the University of Wrocław in Poland. But it “turns out to be bizarrely difficult.” Since researchers began attacking the k-server problem in the late 1980s, they have wondered exactly how well online algorithms can handle the task.

Over the decades, researchers began to believe there’s a certain level of algorithmic performance you can always achieve for the k-server problem. So no matter what version of the problem you’re dealing with, there’ll be an algorithm that reaches this goal. But in a paper first published online last November, three computer scientists showed that this isn’t always achievable. In some cases, every algorithm falls short.

Nov 20, 2023

Research reveals rare metal could offer revolutionary switch for future quantum devices

Posted by in categories: particle physics, quantum physics

Quantum scientists have discovered a rare phenomenon that could hold the key to creating a ‘perfect switch’ in quantum devices which flips between being an insulator and a superconductor.

The research, led by the University of Bristol and published in Science, found these two opposing electronic states exist within purple bronze, a unique one-dimensional metal composed of individual conducting chains of atoms.

Tiny changes in the material, for instance, prompted by a small stimulus like heat or light, may trigger an instant transition from an insulating state with zero conductivity to a superconductor with unlimited conductivity, and vice versa. This polarized versatility, known as “emergent symmetry,” has the potential to offer an ideal On/Off switch in future quantum technology developments.

Nov 20, 2023

Supermassive black hole at the heart of the Milky Way is approaching the cosmic speed limit, dragging space-time along with it

Posted by in categories: cosmology, physics

The supermassive black hole at the heart of our galaxy isn’t just spinning — it’s doing so at almost maximum speed, dragging anything near it along for the ride.

Physicists calculated the rotational speed of the Milky Way’s supermassive black hole, called Sagittarius A* (Sgr A, by using NASA’s Chandra X-ray Observatory to view the X-rays and radio waves emanating from outflows of material.