Toggle light / dark theme

Researchers have enabled a man who is paralyzed to control a robotic arm through a device that relays signals from his brain to a computer.

He was able to grasp, move and drop objects just by imagining himself performing the actions.

The device, known as a brain-computer interface (BCI), worked for a record 7 months without needing to be adjusted. Until now, such devices have only worked for a day or two.

The BCI relies on an AI model that can adjust to the small changes that take place in the brain as a person repeats a movement – or in this case, an imagined movement – and learns to do it in a more refined way.

“This blending of learning between humans and AI is the next phase for these brain-computer interfaces,” said the neurologist. “It’s what we need to achieve sophisticated, lifelike function.”

Science, Policy And Advocacy For Impactful And Sustainable Health Ecosystems — Dr. Catharine Young, Ph.D. — fmr. Assistant Director of Cancer Moonshot Policy and International Engagement, White House Office of Science and Technology Policy (OSTP)


Dr. Catharine Young, Ph.D. recently served as Assistant Director of Cancer Moonshot Policy and International Engagement at the White House Office of Science and Technology Policy (https://www.whitehouse.gov/ostp/) where she served at OSTP to advance the Cancer Moonshot (https://www.cancer.gov/research/key-i… with a mission to decrease the number of cancer deaths by 50% over the next 25 years.

Dr. Young’s varied career has spanned a variety of sectors including academia, non-profit, biotech, and foreign government, all with a focus on advancing science.

Dr. Young previously served as Executive Director of the SHEPHERD Foundation, where she championed rare cancer research and drove critical policy changes. Her work has also included fostering interdisciplinary collaborations and advancing the use of AI, data sharing, and clinical trial reform to accelerate cancer breakthroughs.

Dr. Young’s leadership in diplomacy and innovation includes roles such as Senior Director of Science Policy at the Biden Cancer Initiative and Senior Science and Innovation Policy Advisor at the British Embassy, where she facilitated international agreements to enhance research collaborations.

New research from India has made it 10 times cheaper to construct buildings on-site using a 3D printer.

A report from The Better India highlights the work of Dr. Pradeepkumar Sundarraj, who built the Kelvin6K Pro. It’s India’s first on-site construction 3D printer that can build a 2,500-square-foot home in less than 30 days.

Ultrahigh Energy Cosmic Rays are the highest-energy particles in the universe, whose energies are more than a million times what can be achieved by humans. But while the existence of UHECRs has been known for 60 years, researchers have not succeeded in formulating a satisfactory explanation for their origin that explains all the observations.

But a new theory introduced by New York University physicist Glennys Farrar provides a viable and testable explanation for how UHECRs are created.

“After six decades of effort, the origin of the mysterious highest-energy particles in the universe may finally have been identified,” says Farrar, a Collegiate Professor of Physics and Julius Silver, Rosalind S. Silver, and Enid Silver Winslow Professor at NYU. “This insight gives a new tool for understanding the most cataclysmic events of the universe: two neutron stars merging to form a black hole, which is the process responsible for the creation of many precious or exotic elements, including gold, platinum, uranium, iodine, and xenon.”

All eyes will be on Nvidia’s GPU Technology Conference this week, where the company is expected to unveil its next artificial intelligence chips. Nvidia chief executive Jensen Huang said he will share more about the upcoming Blackwell Ultra AI chip, Vera Rubin platform, and plans for following products at the annual conference, known as the GTC, during the company’s fiscal fourth quarter earnings call.

On the earnings call, Huang said Nvidia has some really exciting things to share at the GTC about enterprise and agentic AI, reasoning models, and robotics. The chipmaker introduced its highly anticipated Blackwell AI platform at last year’s GTC, which has successfully ramped up large-scale production, and made billions of dollars in sales in its first quarter, according to Huang.

Analysts at Bank of America said in a note on Wednesday that they expect Nvidia to present attractive albeit well-expected updates on Blackwell Ultra, with a focus on inferencing for reasoning models, which major firms such as OpenAI and Google are racing to develop.

The analysts also anticipate the chipmaker to share more information on its next-generation networking technology, and long-term opportunities in autonomous cars, physical AI such as robotics, and quantum computing.

In January, Nvidia announced that it would host its first Quantum Day at the GTC, and have executives from D-Wave and Rigetti discuss where quantum computing is headed. The company added that it will unveil quantum computing advances shortening the timeline to useful applications.

The same month, quantum computing stocks tanked after Huang expressed doubts over the technology’s near-term potential during the chipmaker’s financial analyst day at the Consumer Electronics Show, saying useful quantum computers are likely decades away.

Large Language Models (LLMs) both threaten the uniqueness of human social intelligence and promise opportunities to better understand it. In this talk, I evaluate the extent to which distributional information learned by LLMs allows them to approximate human behavior on tasks that appear to require social intelligence. In the first half, I will compare human and LLM responses in experiments designed to measure theory of mind—the ability to represent and reason about the mental states of other agents. Second, I present the results of an evaluation of LLMs using the Turing test, which measures a machine’s ability to imitate humans in a multi-turn social interaction.

Cameron Jones recently graduated with a PhD in Cognitive Science from the Language and Cognition Lab at UC San Diego. His work focuses on comparing humans and Large Language Models (LLMs) to learn more about how each of those systems works. He is interested in the extent to which LLMs can explain human behavior that appears to rely on world knowledge, reasoning, and social intelligence. In particular, he is interested in whether LLMs can approximate human social behavior, for instance in the Turing test, or by persuading or deceiving human interlocutors.

https://camrobjones.com/

https://scholar.google.com/citations? / camrobjones.

/ camrobjones.

Convergent engagement of neural and computational sciences and technologies are reciprocally enabling rapid developments in current and near-future military and intelligence operations. In this podcast, Prof. James Giordano of Georgetown University will provide an overview of how these scientific and technological fields can be — and are being — leveraged for non-kinetic and kinetic what has become known as cognitive warfare; and will describe key issues in this rapidly evolving operational domain.

James Giordano PhD, is the Pellegrino Center Professor in the Departments of Neurology and Biochemistry; Chief of the Neuroethics Studies Program; Co-director of the Project in Brain Sciences and Global Health Law and Policy; and Chair of the Subprogram in Military Medical Ethics at Georgetown University Medical Center, Washington DC. Professor Giordano is Senior Bioethicist of the Defense Medical Ethics Center, and Adjunct Professor of Psychiatry at the Uniformed Services University of Health Sciences; Distinguished Stockdale Fellow in Science, Technology, and Ethics at the United States Naval Academy; Senior Science Advisory Fellow of the SMA Branch, Joint Staff, Pentagon; Non-resident Fellow of the Simon Center for the Military Ethic at the US Military Academy, West Point; Distinguished Visiting Professor of Biomedical Sciences, Health Promotions, and Ethics at the Coburg University of Applied Sciences, Coburg, GER; Chair Emeritus of the Neuroethics Project of the IEEE Brain Initiative; and serves as Director of the Institute for Biodefense Research, a federally funded Washington DC think tank dedicated to addressing emerging issues at the intersection of science, technology and national defense. He previously served as Donovan Group Senior Fellow, US Special Operations Command; member of the Neuroethics, Legal, and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA); and Task Leader of the Working Group on Dual-Use of the EU-Human Brain Project. Prof. Giordano is the author of over 350 peer-reviewed publications, 9 books and 50governmental reports on science, technology, and biosecurity, and is an elected member of the European Academy of Science and Arts, a Fellow of the Royal Society of Medicine (UK), and a Fulbright Professorial Fellow. A former US Naval officer, he was winged as an aerospace physiologist, and served with the US Navy and Marine Corps.