Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Quantum computing occurs naturally in the human brain, study finds

Kurian’s group believes these large tryptophan networks may have evolved to take advantage of their quantum properties. When cells breathe using oxygen—a process called aerobic respiration—they create free radicals, or reactive oxygen species (ROS). These unstable particles can emit high-energy UV photons, which damage DNA and other important molecules.

Tryptophan networks act as natural shields. They absorb this harmful light and re-emit it at lower energies, reducing damage. But thanks to superradiance, they may also perform this protective function much more quickly and efficiently than single molecules could.

Life’s emergence from non-living matter found more complex than previously understood

A new study published in July 2025 tackles one of science’s most profound mysteries—how did life first emerge from nonliving matter on early Earth? Using cutting edge mathematical approaches, researcher Robert G. Endres from Imperial College London has developed a framework that suggests the spontaneous origin of life faces far greater challenges than previously understood.

Neutrino masses are not likely to originate from interactions with dark matter, study finds

Neutrinos are fundamental particles characterized by no electric charge and very small masses, which are known to interact with other matter via the weak force or gravity. While these particles have been the focus of numerous research studies, the processes through which they acquire their masses have not yet been elucidated.

One hypothesis is that neutrino masses originate from interactions with ultralight dark matter, a type of dark matter theorized to be made up of particles or fields with extremely small masses below 10 electron volts (eV). Researchers at Shanghai Jiao Tong University and University of Salerno recently set out to test this hypothesis by comparing data collected by the Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) experiment to theoretical predictions.

Their findings, published in a paper in Physical Review Letters, suggest that neutrino masses are not likely to have a dark origin.

Climate-protecting carbon sinks of EU forests are declining

Forests cover about 40% of the EU’s land area. Between 1990 and 2022, they absorbed around 10% of the continent’s man-made carbon emissions. However, the carbon dioxide absorption capacity of forests, also known as carbon sinks, is becoming increasingly weaker.

This is shown by calculations of multi-year carbon budgets by an international team of researchers in a recent Nature study. The continuous decline in the carbon sink of our forests jeopardizes the EU’s climate targets. To halt or reverse the trend, the authors recommend practical measures in research and forest management.

Forests absorb (CO₂) from the atmosphere, which they use for their metabolism and convert into biomass. Healthy and growing forests therefore act as carbon sinks, storing climate-damaging CO₂ from the atmosphere in the long term.

Transportation @ PNNL: Eliminating Critical Materials in Batteries

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle and supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the DOE Office of Science website. For more information about PNNL, visit PNNL’s News Center. Follow us on X, Facebook, LinkedIn and Instagram.

Brain imaging may identify patients likely to benefit from anxiety care app

The preliminary study suggested that young people with weaker connections between two involved in both attending to and regulating responses to were more likely to benefit from a self-guided anxiety care app than those with stronger connections.

The study, published in JAMA Network Open, looked at data from a subset of clinical trial participants who agreed to undergo a brain MRI before using the anxiety care app developed by the investigators.