Photonics researchers from Tampere University, Finland, and Kastler-Brossel Laboratory, France, have demonstrated how self-imaging of light, a phenomenon known for nearly two centuries, can be applied to cylindrical systems, facilitating unprecedented control of light’s structure with great potential for advanced optical communication systems. In addition, a new type of space-time duality was explored for powerful analogies bridging different fields of optics.
In 1836, Henry F. Talbot performed an experiment, where he observed light patterns that naturally reappear after some propagation without the use of any lenses or imaging optics—a self-imaging phenomenon nowadays of then termed the Talbot effect.
Recently, researchers interested in sculpting light from the Experimental Quantum Optics Group (EQO) in Tampere University, as well as the Complex Media Optics group at Kastler Brossel Laboratory, in Ecole Normale Supérieure, Paris, have teamed up and investigated the self-imaging Talbot effect in cylindrical systems in greater depth than ever before. The presented interesting fundamental physics and powerful applications in optical communications have now been published in the journal Nature Photonics.