Toggle light / dark theme

Patients with growth hormone receptor deficiency, or Laron syndrome, appear to have lower than average risk factors for cardiovascular disease, according to a new study.

A new study highlights possible cardiovascular health advantages in individuals with a rare condition known as growth hormone receptor deficiency (GHRD), also called Laron syndrome.

GHRD, which is characterized by the body’s impaired ability to use its own growth hormone and results in stunted growth, has been linked in mice to a record 40% longevity extension and lower risks for various age-related diseases. However, the risk of cardiovascular disease in individuals with GHRD has remained unclear until now, leading to the speculation that in people, this mouse longevity mutation may actually increase cardiovascular disease.

The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution.

Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1,300 light-years away.

The nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material that is harder to erode. Astronomers estimate that the Horsehead has about 5 million years left before it too disintegrates. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.

Innovation For A Sustainable Global Energy Transformation — Dr. Roland Roesch, Ph.D. — Director, Innovation and Technology Centre, International Renewable Energy Agency (IRENA)


Dr. Roland Roesch, Ph.D. is Director, Innovation and Technology Centre (IITC), of the International Renewable Energy Agency (IRENA — https://www.irena.org/) where he oversees the Agency’s work on advising member countries in the area of technology status and roadmaps, energy planning, cost and markets and innovation policy frameworks.

The International Renewable Energy Agency (IRENA) is a leading global intergovernmental agency for energy transformation that serves as the principal platform for international cooperation, supports countries in their energy transitions, and provides state of the art data and analyses on technology, innovation, policy, finance and investment. IRENA drives the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy in the pursuit of sustainable development, energy access, and energy security, for economic and social resilience and prosperity and a climate-proof future.

A joint team of physicists from Skoltech, MIPT, and ITMO developed an optical component that helps manage the properties of a terahertz beam and split it into several channels. The new device can be used as a modulator and generator of terahertz vortex beams in medicine, 6G communications, and microscopy. The paper appears in the journal Advanced Optical Materials.

Apologies for the (hopefully now somewhat less) clickbait-y title. Now, of course, I know that the Big Bang did not happen at any point connected to a single point in our current $3$-dimensional observable universe by a one-dimensional causal curve. I also know that at any point in the universe, all other points seem to be moving away from that point. However, according to our current understanding of physics, the universe is (at least) $4$-dimensional. Just like how in the classical “balloon” analogy for an expanding universe, the points do in fact all move away from a common point on the interior of the balloon, all spacetime points do move away from the Big Bang, or at least some kind of cosmological horizon which surrounds it — this is how I understand going forward in time, at least. Does it make sense to think of this as a sort of “center” for the full, $4$-dimensional spacetime? Or are there further subtleties to this situation?

I don’t subscribe but if you do, you’ll get more but the short summary kinda gives a general idea. Astronomers spotted 60 stars with potential Dyson sphered around them but it isn’t 100% verifiable. It could be a simpler explanation they say.


Sufficiently advanced aliens would be able to capture vast quantities of energy from their star using a massive structure called a Dyson sphere. Such a device would give off an infrared heat signature — and astronomers have just spotted 60 stars that seem to match.

By Jonathan O’Callaghan