Toggle light / dark theme

Advanced observations by the JWST indicate that early galaxies matured faster and were less chaotic, challenging previous theories of galaxy evolution.

New research has revealed that the Universe’s early galaxies were less turbulent and developed more rapidly than previously believed. This research, led by an international team from Durham University, utilized the James Webb Space Telescope (JWST) to find evidence of bar formation when the Universe was only a few billion years old.

These findings were published in the journal Monthly Notices of the Royal Astronomical Society.

Researchers at Rensselaer Polytechnic Institute have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings, published in the journal Nature Nanotechnology, could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

The universe is expanding at an accelerating rate but Einstein’s theory of General Relativity and our knowledge of particle physics predict that this shouldn’t be happening. Most cosmologists pin their hopes on Dark Energy to solve the problem. But, as Claudia de Rham argues, Einstein’s theory of gravity is incorrect over cosmic scales, her new theory of Massive Gravity limits gravity’s force in this regime, explains why acceleration is happening, and eliminates the need for Dark Energy.

You can see Claudia de Rham live, debating in ‘Dark Energy and The Universe’ alongside Priya Natarajan and Chris Lintott and ‘Faster Than Light’ with Tim Maudlin and João Magueijo at the upcoming HowTheLightGetsIn Festival on May 24th-27th in Hay-on-Wye.

This article is presented in association with Closer To Truth, an esteemed partner for the 2024 HowTheLightGetsIn Festival.

Researchers at Texas Children’s Cancer Center and the Center for Cell and Gene Therapy at Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist published results of a phase I clinical trial of a novel immunotherapy for high-risk sarcomas in the journal Nature Cancer.

The therapy uses chimeric antigen receptor (CAR) T cells engineered to target the HER2 protein, which is overexpressed on the surface of sarcoma cells. Sarcoma is a type of solid cancer that develops in the bones and soft tissues. The HEROS 2.0 trial showed that this therapeutic approach is safe and is associated with clinical benefit.

“CAR T cell therapy has been a highly successful strategy for recurrent or high-risk leukemias or lymphomas, but challenges remain in using this therapy for solid tumors,” said first and corresponding author Dr. Meenakshi Hegde, associate professor of pediatricshematology and oncology at Baylor and pediatric oncologist at Texas Children’s Cancer Center. “The results of this trial show that we are moving the dial in harnessing the power of CAR T cells as an effective anticancer therapy for sarcomas.”

Retinitis pigmentosa and macular degeneration lead to photoreceptor death and loss of visual perception. Despite recent progress, restorative technologies for photoreceptor degeneration remain largely unavailable. Here, we describe a novel optogenetic visual prosthesis (FlexLED) based on a combination of a thin-film retinal display and optogenetic activation of retinal ganglion cells (RGCs). The FlexLED implant is a 30 µm thin, flexible, wireless µLED display with 8,192 pixels, each with an emission area of 66 µm2. The display is affixed to the retinal surface, and the electronics package is mounted under the conjunctiva in the form factor of a conventional glaucoma drainage implant. In a rabbit model of photoreceptor degeneration, optical stimulation of the retina using the FlexLED elicits activity in visual cortex. This technology is readily scalable to hundreds of thousands of pixels, providing a route towards an implantable optogenetic visual prosthesis capable of generating vision by stimulating RGCs at near-cellular resolution.

### Competing Interest Statement.

All authors have a financial interest in Science Corporation.