Toggle light / dark theme

To overcome that limitation, MIT researchers have developed a computational technique that allows large language models to predict antibody structures more accurately. Their work could enable researchers to sift through millions of possible antibodies to identify those that could be used to treat SARS-CoV-2 and other infectious diseases.

The findings are published in the journal Proceedings of the National Academy of Sciences.

A group of astronomers from numerous institutions have investigated a recently discovered nearby tidal disruption event known as ASASSN-22ci. They detected two luminous flares from this event. The finding was reported in a paper published Dec. 19 on the preprint server arXiv.

Tidal disruption events (TDEs) are astronomical phenomena that occur when a star passes close enough to a and is pulled apart by the black hole’s tidal forces, causing the process of disruption.

Such tidally disrupted stellar debris starts raining down on the black hole and radiation emerges from the innermost region of accreting debris, which is an indicator of the presence of a TDE. All in all, the debris stream–stream collision causes an energy dissipation, which may lead to the formation of an accretion disk.

Hula hooping is so commonplace that we may overlook some interesting questions it raises: “What keeps a hula hoop up against gravity?” and “Are some body types better for hula hooping than others?” A team of mathematicians explored and answered these questions with findings that also point to new ways to better harness energy and improve robotic positioners.

The results are the first to explain the physics and mathematics of hula hooping.

“We were specifically interested in what kinds of body motions and shapes could successfully hold the hoop up and what physical requirements and restrictions are involved,” explains Leif Ristroph, an associate professor at New York University’s Courant Institute of Mathematical Sciences and the senior author of the paper, which appears in the Proceedings of the National Academy of Sciences.

Detecting infrared light is critical in an enormous range of technologies, from remote controls to autofocus systems to self-driving cars and virtual reality headsets. That means there would be major benefits from improving the efficiency of infrared sensors, such as photodiodes.

Researchers at Aalto University have developed a new type of infrared photodiode that is 35% more responsive at 1.55 µm, the key wavelength for telecommunications, compared to other germanium-based components. Importantly, this new device can be manufactured using current production techniques, making it highly practical for adoption.

“It took us eight years from the idea to proof-of-concept,” says Hele Savin, a professor at Aalto University.

A top-secret lab in the UK is developing the country’s first quantum clock to help the British military boost intelligence and reconnaissance operations, the defense ministry said Thursday.

The clock is so precise that it will lose less than one second over billions of years, “allowing scientists to measure time at an unprecedented scale,” the ministry said in a statement.

“The trialing of this emerging, groundbreaking technology could not only strengthen our operational capability, but also drive progress in industry, bolster our science sector and support high-skilled jobs,” Minister for Defense Procurement Maria Eagle said.

Prof Zhang Zhiyong’s team at Peking University developed a heterojunction-gated field-effect transistor (HGFET) that achieves high sensitivity in short-wave infrared detection, with a recorded specific detectivity above 1014 Jones at 1,300 nm, making it capable of starlight detection. Their research was recently published in the journal Advanced Materials, titled “Opto-Electrical Decoupled Phototransistor for Starlight Detection.”

Highly sensitive shortwave infrared (SWIR) detectors are essential for detecting weak radiation (typically below 10−8 W·Sr−1 ·cm−2 ·µm−1) with high-end passive image sensors. However, mainstream SWIR detection based on epitaxial photodiodes cannot effectively detect ultraweak infrared radiation due to the lack of inherent gain.

Filling this gap, researchers at the Peking University School of Electronics and collaborators have presented a heterojunction-gated (HGFET) that achieves ultra-high photogain and exceptionally in the short-wavelength infrared (SWIR) region, benefiting from a design that incorporates a comprehensive opto-electric decoupling mechanism.

As DARPA forges ahead with this new initiative, it raises important questions about the balance between enhancing national security and safeguarding individual privacy and civil liberties.

The potential repercussions of deploying sophisticated algorithms to interpret human behavior could lead to ethical dilemmas and increased scrutiny from civil rights advocates.

In summary, DARPA’s Theory of Mind program is positioned at the intersection of technology and national security, focusing on leveraging machine learning to improve decision-making in complex scenarios.

This is according to AI ethicists from the University of Cambridge, who say we are at the dawn of a “lucrative yet troubling new marketplace for digital signals of intent”, from buying movie tickets to voting for candidates. They call this the Intention Economy.

Researchers from Cambridge’s Leverhulme Centre for the Future of Intelligence (LCFI) argue that the explosion in generative AI, and our increasing familiarity with chatbots, opens a new frontier of “persuasive technologies” – one hinted at in recent corporate announcements by tech giants.

“Anthropomorphic” AI agents, from chatbot assistants to digital tutors and girlfriends, will have access to vast quantities of intimate psychological and behavioural data, often gleaned via informal, conversational spoken dialogue.