Toggle light / dark theme

From CNN:

KEKAHA, Hawaii (CNN) — The Pentagon’s Missile Defense Agency shot down a dummy target missile over the southern Pacific Ocean during a test of the U.S. missile defense shield early Saturday, according to an agency spokeswoman.

First, a dummy ballistic missile was fired from a U.S. mobile launch platform in the Pacific Ocean in a simulated attack.

Moments later, an interceptor missile was fired from the agency’s missile range facility on Hawaii’s Kauai Island and struck the dummy warhead over the Pacific Ocean, military footage showed.

ec flagThe European Commission, the European Research Advisory Board (EURAB) and the European Research Councils have each recently recommended adopting the policy of providing Open Access to research results.

(Very similar recommendations are also being made by governmental research organisations in the United States, Canada, Australia, and Asia.)

There are powerful non-research interests lobbying vigorously against these policy recommendations, so a display of support by the research community is critically important at this time.

A petition in support of the European Commission policy recommendation is now being sponsored by a consortium of European organisations:

From CNN:

TBILISI, Georgia (Reuters) — Georgian special services have foiled an attempt by a Russian citizen to sell weapons-grade uranium for $1 million in the Georgian capital, a senior Interior Ministry official said on Thursday.

The official said Oleg Khintsagov, a resident of Russia’s North Ossetia region, was arrested in early 2006 and a closed court soon after convicted him to 8 1/2 years in prison.

Khintsagov was detained as he tried to sell uranium-235 to an undercover Georgian agent posing as a member of a radical Islamic group, said Shota Utiashvili, who heads the ministry’s information and analytical department.

From The Daily Telegraph:

North Korea is helping Iran to prepare an underground nuclear test similar to the one Pyongyang carried out last year.

Under the terms of a new understanding between the two countries, the North Koreans have agreed to share all the data and information they received from their successful test last October with Tehran’s nuclear scientists.

North Korea provoked an international outcry when it successfully fired a bomb at a secret underground location and Western intelligence officials are convinced that Iran is working on its own weapons programme.

A senior European defence official told The Daily Telegraph that North Korea had invited a team of Iranian nuclear scientists to study the results of last October’s underground test to assist Tehran’s preparations to conduct its own — possibly by the end of this year.

There were unconfirmed reports at the time of the Korean firing that an Iranian team was present. Iranian military advisers regularly visit North Korea to participate in missile tests.

Now the long-standing military co-operation between the countries has been extended to nuclear issues.

Worrisome. If Iran develops nuclear weapons, there could be a war.

From WIRED.com:

The revelation last week that China had slammed a medium-range ballistic missile into one of its aging satellites on January 11 and littered space with junk fragments has created its own form of political debris in Washington, D.C.

The test, which the United States military had long anticipated, has touched off debate over how the U.S. government should interpret and respond to China’s actions.

“It’s a very provocative act,” said Gregory Kulacki, a senior analyst and China expert with the Union of Concerned Scientists. However, “policy makers should respond on the basis of accurate information, not military rhetoric and propaganda.”

For advocates of a more aggressive American posture in space, the anti-satellite test — the first since the United States conducted one in 1985 — confirms long-held suspicions about China’s military ambition in space, and justifies the need for increased spending on space-based weapons programs that recall the star-wars aspirations of the Reagan presidency.

“I hope the Chinese test will be a wake up call to people,” said Hank Cooper, a former director of the Strategic Defense Initiative (SDI) program and the chairman of High Frontier, a missile defense advocacy group. “I’d like to see us begin a serious anti-satellite program. We’ve been leaning on the administration. This argument to prevent weaponization of space is really silly.”

From the Unemumerated blog, this piece was originally written in 1993:

Using materials native to space, instead of hauling everything from Earth, is crucial to future efforts at large-scale space industrialization and colonization. At that time we will be using technologies far in advance of today’s, but even now we can see the technology developing for use here on earth.

There are a myriad of materials we would like to process, including dirty organic-laden ice on comets and some asteroids, subsurface ice and the atmosphere of Mars, platinum-rich unoxidized nickel-iron metal regoliths on asteroids, etc. There are an even wider array of materials we would like to make. The first and most important is propellant, but eventually we want a wide array of manufacturing and construction inputs, including complex polymers like Kevlar and graphite epoxies for strong tethers.

The advantages of native propellant can be seen in two recent mission proposals. In several Mars mission proposals[1], H2 from Earth or Martian water is chemically processed with CO2 from the Martian atmosphere, making CH4 and O2 propellants for operations on Mars and the return trip to Earth. Even bringing H2 from Earth, this scheme can reduce the propellant mass to be launched from Earth by over 75%. Similarly, I have described a system that converts cometary or asteroidal ice into a cylindrical, zero-tank-mass thermal rocket. This can be used to transport large interplanetary payloads, including the valuable organic and volatile ices themselves into high Earth and Martian orbits.

Earthside chemical plants are usually far too heavy to launch on rockets into deep space. An important benchmarks for plants in space is the thruput mass/equipment mass, or mass thruput ratio (MTR). At first glance, it would seem that almost any system with MTR>1 would be worthwhile, but in real projects risk must be reduced through redundancy, time cost of money must be accounted for, equipment launched from earth must be affordable in the first place (typically

The New Scientist also has an article about how exploding robots could be sent to determine the composition of Near Earth Asteroids. This would be relevant in developing a proper Asteroid shield. A current project is the Lifeboat AsteroidShield

An illustration from Ball Aerospace and New Scientist.

The Ball Aerospace proposal of many small probes seems cost efficient and worthy of being advocated by the Lifeboat Foundation.

The New Scientist discusses a recent study that advocates using of an ion beam generator on the moon to allow the use of far smaller rockets to move from the moon to other locations in space. The ion beam generator would need several hundred megawatts of electrical power from either a large solar cell array or nuclear power.

I have discussed the need on my website to make gigawatts of power on the moon and in orbit in order to begin serious development and colonization efforts.

An alternative to ion beams would be magbeam, a plasma based approach for accelerating spaceships

The Lifeboat Foundation supports space habitats and Asteroid shields

There were several significant developments and announcements that were nanotechnology related.

The UK Ideas Factory Sandpit announced three ambitious, but in my opinion achievable projects in the 2–5 year timeframe.

1. A system with software based control for the assembly of DNA oligomers, nanopartices and other small molecules. This would be a significant advance over current DNA synthesis if they are successful.

2. Computer-directed actuators with sub-angstrom precisions that is based upon novel surface-bound, reconfigurable nanoscale building blocks and a prototype computer-controlled matter manipulator (akin to a nanoscale conveyor belt)