Toggle light / dark theme

The air is buzzing. People are talking about health more than ever before, and it’s good news for patients. Technology is making it possible for patients to take an active role in “participatory medicine”, partnering with their doctors to decide on the best course of action for their health.

Over the next few months, these 6 events will bring together patients, researchers, doctors, and health enthusiasts. Discussions, partnerships, and innovations will emerge. Keep your eye on these, and attend if you can!

1. TEDMED — October 27–30, http://www.tedmed.com
The medical version of the legendary TED conferences. From the TEDMED site: “The fifth in a series created by Marc Hodosh and Richard Saul Wurman, TEDMED celebrates conversations that demonstrate the intersection and connections between all things medical and healthcare related: from personal health to public health, devices to design and Hollywood to the hospital.” This year’s speakers include Dean Kamen, Craig Venter, Sanjay Gupta and Goldie Hawn..

2. Transform — September 13–15, http://centerforinnovation.mayo.edu/transform
A collaborative symposium at The Mayo Clinic Center for Innovation. From the Transform site: “Transform brings together a dynamic group of speakers and participants from inside and outside the health care industry to explore the intersections between human experience, health care delivery and new business models. Join us to imagine and create innovative ways to deliver a better health care experience in a 21st century world.”

3. Health 2.0 — October 6–7, http://www.health2con.com
Next-generation health companies and patient advocates converge. From the Health 2.0 site: “With more than a hundred speakers and hundreds of new healthcare demos and technologies on display on stage and in the exhibit hall, you’ll get a sweeping overview of the ways that information technology and the web are changing healthcare in areas from online search to health focused online communities and social networks.”

4. Web Strategies for Health Communication — July 19–24, http://webstrategiesforhealth.com
A new course by Dr. Lisa Gualtieri at Tufts University School of Medicine. From the Web Strategies site: “The Summer Institute on Web Strategies for Health Communication covers how to develop and implement a Web strategy to drive a health organization’s online presence, specifically the processes for selecting, using, managing, and evaluating the effectiveness of Web technologies for health communication.”

5. Singularity University — July-August, http://singularityu.org
Graduate studies program started by Ray Kurzweil and Peter Diamandis. From the Singularity University site: “Singularity University aims to assemble, educate and inspire a cadre of leaders who strive to understand and facilitate the development of exponentially advancing technologies and apply, focus and guide these tools to address humanity’s grand challenges.” Biotechnology and Medicine are two of the tracks they offer..

6. Regenstrief Conference — Sept 23–35, http://www.regenstrief.org/conferences/2009
An invitation-only unconference, but one to watch. From the Regenstrief site: “The theme for this year’s conference is Open Health Methodologies. Participants include: Clay Shirky (open source), Dr. Roni Zeiger (Google Health), and Mark Surman (Mozilla).”

If you aren’t able to attend, let us know what you think are the most important issues in health today and we’ll make sure to represent your ideas. Good things will come from all the buzz — the future of health care and health research is bright.

U.S. News and World Report — May 12, 2009, by KEVIN McGILL

BATON ROUGE, La.—Combining human and animal cells to create what are sometimes called “human-animal hybrids” would be a crime in Louisiana, punishable by up to 10 years in prison, under legislation approved Tuesday by a state Senate panel.

Scientific researchers in some areas have tried to create human embryonic stem cells, which scientists say could be used to develop treatment for a variety of human ailments, by placing human DNA into animal cells. But such practices are controversial for a number of reasons.

Sen. Danny Martiny’s bill, approved without objection by members of the Senate Judiciary Committee, was designed to outlaw such practices. It defines and criminalizes various ways of making human-animal hybrids, including combining human sperm and an animal egg, combining animal sperm with a human egg, and the use of human brain tissue or neural tissue to develop a human brain in an animal.

The bill by Martiny, R-Kenner, goes next to the full Senate.

Attorney Dorinda Bordlee, an anti-abortion activist and an opponent of human embryonic stem cell research, said the bill would not stop common medical practices such as the use of pig valves in human heart surgery; nor would it prohibit research in which human brain cells are grown in mouse brains. The growth of a few thousand cells in a mouse brain would not violate the bill’s prohibition of a “non-human life form engineered such that it contains a human brain or a brain derived wholly or predominantly from human neural tissues,” Bordlee said.

The idea of using animal-human “hybrid” embryos drew fire last year in Britain as authorities pondered whether to let scientists try it. Opponents objected to mixing human and animal material and worried that such research could lead to genetically modified babies.

Another element of the argument: Regardless of whether animal cells are used, the creation of embryonic stem cells for research is opposed by some because it destroys the embryo, considered by some to be a human life.

A report earlier this year by researchers with Advanced Cell Technology in Worcester, Mass., cast doubt on the effectiveness of using human DNA in animal eggs to make hybrid cloned embryos. The animal eggs don’t reprogram human DNA in the right way to generate stem cells, researchers reported.

(Crossposted on the blog of Starship Reckless)

Eleven years ago, Random House published my book To Seek Out New Life: The Biology of Star Trek. With the occasion of the premiere of the Star Trek reboot film and with my mind still bruised from the turgid awfulness of Battlestar Galactica, I decided to post the epilogue of my book, very lightly updated — as an antidote to blasé pseudo-sophistication and a reminder that Prometheus is humanity’s best embodiment. My major hope for the new film is that Uhura does more than answer phones and/or smooch Kirk.

Coda: The Infinite Frontier

star-trekA younger science than physics, biology is more linear and less exotic than its older sibling. Whereas physics is (mostly) elegant and symmetric, biology is lunging and ungainly, bound to the material and macroscopic. Its predictions are more specific, its theories less sweeping. And yet, in the end, the exploration of life is the frontier that matters the most. Life gives meaning to all elegant theories and contraptions, life is where the worlds of cosmology and ethics intersect.

Our exploration of Star Trek biology has taken us through wide and distant fields — from the underpinnings of life to the purposeful chaos of our brains; from the precise minuets of our genes to the tangled webs of our societies.

How much of the Star Trek biology is feasible? I have to say that human immortality, psionic powers, the transporter and the universal translator are unlikely, if not impossible. On the other hand, I do envision human genetic engineering and cloning, organ and limb regeneration, intelligent robots and immersive virtual reality — quite possibly in the near future.

Furthermore, the limitations I’ve discussed in this book only apply to earth biology. Even within the confines of our own planet, isolated ecosystems have yielded extraordinary lifeforms — the marsupials of Australia; the flower-like tubeworms near the hot vents of the ocean depths; the bacteriophage particles which are uncannily similar to the planetary landers. It is certain that when we finally go into space, whatever we meet will exceed our wildest imaginings.

Going beyond strictly scientific matters, I think that the accuracy of scientific details in Star Trek is almost irrelevant. Of course, it puzzles me that a show which pays millions to principal actors and for special effects cannot hire a few grad students to vet their scripts for glaring factual errors (I bet they could even get them for free, they’d be that thrilled to participate). Nevertheless, much more vital is Star Trek’s stance toward science and the correctness of the scientific principles that it showcases. On the latter two counts, the series has been spectacularly successful and damaging at the same time.

The most crucial positive elements of Star Trek are its overall favorable attitude towards science and its strong endorsement of the idea of exploration. Equally important (despite frequent lapses) is the fact that the Enterprise is meant to be a large equivalent to Cousteau’s Calypso, not a space Stealth Bomber. However, some negative elements are so strong that they almost short-circuit the bright promise of the show.

I cannot be too harsh on Star Trek, because it’s science fiction — and TV science fiction, at that. Yet by choosing to highlight science, Star Trek has also taken on the responsibility of portraying scientific concepts and approaches accurately. Each time Star Trek mangles an important scientific concept (such as evolution or black hole event horizons), it misleads a disproportionately large number of people.

The other trouble with Star Trek is its reluctance to showcase truly imaginative or controversial ideas and viewpoints. Of course, the accepted wisdom of media executives who increasingly rely on repeating well-worn concepts is that controversial positions sink ratings. So Star Trek often ignores the agonies and ecstasies of real science and the excitement of true or projected scientific discoveries, replacing them with pseudo-scientific gobbledygook more appropriate for series like The X-Files, Star Wars and Battlestar Galactica. Exciting ideas (silicon lifeforms beyond robots, parallel universes) briefly appear on Star Trek, only to sink without a trace. This almost pathological timidity of Star Trek, which enjoys the good fortune of a dedicated following and so could easily afford to cut loose, does not bode well for its descendants or its genre.

trekmovie2w

On the other hand, technobabble and all, Star Trek fulfills a very imporant role. It shows and endorses the value of science and technology — the only popular TV series to do so, at a time when science has lost both appeal and prestige. With the increasing depth of each scientific field, and the burgeoning of specialized jargon, it is distressingly easy for us scientists to isolate ourselves within our small niches and forget to share the wonders of our discoveries with our fellow passengers on the starship Earth. Despite its errors, Star Trek’s greatest contribution is that it has made us dream of possibilities, and that it has made that dream accessible to people both inside and outside science.

Scientific understanding does not strip away the mystery and grandeur of the universe; the intricate patterns only become lovelier as more and more of them appear and come into focus. The sense of excitement and fulfillment that accompanies even the smallest scientific discovery is so great that it can only be communicated in embarrassingly emotional terms, even by Mr. Spock and Commander Data. In the end these glimpses of the whole, not fame or riches, are the real reason why the scientists never go into the suspended animation cocoons, but stay at the starship chart tables and observation posts, watching the great galaxy wheels slowly turn, the stars ignite and darken.

Star Trek’s greatest legacy is the communication of the urge to explore, to comprehend, with its accompanying excitement and wonder. Whatever else we find out there, beyond the shelter of our atmosphere, we may discover that thirst for knowledge may be the one characteristic common to any intelligent life we encounter in our travels. It is with the hope of such an encounter that people throng around the transmissions from Voyager, Sojourner, CoRoT, Kepler. And even now, contained in the sphere of expanding radio and television transmissions speeding away from Earth, Star Trek may be acting as our ambassador.

New Scientist

30 April 2009 by Michael Brooks

Yes, if we play our cards right — or wrong, depending on your perspective.

In engineering terms, it is easy to see qualitative similarities between the human brain and the internet’s complex network of nodes, as they both hold, process, recall and transmit information. “The internet behaves a fair bit like a mind,” says Ben Goertzel, chair of the Artificial General Intelligence Research Institute, an organisation inevitably based in cyberspace. “It might already have a degree of consciousness”.

Not that it will necessarily have the same kind of consciousness as humans: it is unlikely to be wondering who it is, for instance. To Francis Heylighen, who studies consciousness and artificial intelligence at the Free University of Brussels (VUB) in Belgium, consciousness is merely a system of mechanisms for making information processing more efficient by adding a level of control over which of the brain’s processes get the most resources. “Adding consciousness is more a matter of fine-tuning and increasing control… than a jump to a wholly different level,” Heylighen says.

How might this manifest itself? Heylighen speculates that it might turn the internet into a self-aware network that constantly strives to become better at what it does, reorganising itself and filling gaps in its own knowledge and abilities.

If it is not already semiconscious, we could do various things to help wake it up, such as requiring the net to monitor its own knowledge gaps and do something about them. It shouldn’t be something to fear, says Goertzel: “The outlook for humanity is probably better in the case that an emergent, coherent and purposeful internet mind develops.”

Heylighen agrees, but warns that we might find it a little disappointing. “We probably would not notice a whole lot of a difference, initially,” he says.

And when might this begin? According to Heylighen, it all depends on internet fashion trends. If the effort that has gone into developing social networking sites goes into developing internet consciousness, it could happen within a decade, he says.

May 2: Many U.S. emergency rooms and hospitals crammed with people… ”Walking well” flood hospitals… Clinics double their traffic in major cities … ER rooms turn away EMT cases. — CNN

Update May 4: Confirmed cases of H1N1 virus now at 985 in 20 countries (Mexico: 590, 25 deaths) — WHO. In U.S.: 245 confirmed U.S. cases in 35 states. — CDC.

“We might be entering an Age of Pandemics… a broad array of dangerous emerging 21st-century diseases, man-made or natural, brand-new or old, newly resistant to our current vaccines and antiviral drugs…. Martin Rees bet $1,000 that bioterror or bioerror would unleash a catastrophic event claiming one million lives in the next two decades…. Why? Less forest, more contact with animals… more meat eating (Africans last year consumed nearly 700 million wild animals… numbers of chickens raised for food in China have increased 1,000-fold over the past few decades)… farmers cut down jungle, creating deforested areas that once served as barriers to the zoonotic viruses…” — Larry Brilliant, Wall Street Journal


From financial crisis to global catastrophe

Financial crisis which manifested in the 2008 (but started much earlier) has led to discussion in alarmists circles — is this crisis the beginning of the final sunset of mankind? In this article we will not consider the view that the crisis will suddenly disappear and everything returns to its own as trivial and in my opinion false. Transition of the crisis into the global catastrophe emerged the following perspective:
1) The crisis is the beginning of long slump (E. Yudkowsky term), which gradually lead mankind to a new Middle Ages. This point of view is supported by proponents of Peak Oil theory, who believe that recently was passed peak of production of liquid fuels, and since that time, the number of oil production begins to drop a few percent each year, according to bell curve, and that fossil fuel is a necessary resource for the existence of modern civilization, which will not be able to switch to alternative energy sources. They see the current financial crisis as a direct consequence of high oil prices, which brace immoderate consumption. The maintenance is the point of view is the of «The peak all theory», which shows that not only oil but also the other half of the required resources of modern civilization will be exhausted in the next quarter of century. (Note that the possibility of replacing some of resources with other leads to that peaks of each resource flag to one moment in time.) Finally, there is a theory of the «peak demand» — namely, that in circumstances where the goods produced more then effective demand, the production in general is not fit, which includes the deflationary spiral that could last indefinitely.
2) Another view is that the financial crisis will inevitably lead to a geopolitical crisis, and then to nuclear war. This view can be reinforced by the analogy between the Great Depression and novadays. The Great Depression ended with the start of the Second World War. But this view is considering nuclear war as the inevitable end of human existence, which is not necessarily true.
3) In the article “Scaling law of the biological evolution and the hypothesis of the self-consistent Galaxy origin of life”. (Advances in Space Research V.36 (2005), P.220–225” http://dec1.sinp.msu.ru/~panov/ASR_Panov_Life.pdf) Russian scientist A. D. Panov showed that the crises in the history of humanity became more frequent in curse of history. Each crisis is linked with the destruction of some old political system, and with the creation principle technological innovation at the exit from the crisis. 1830 technological revolution lead to industrial world (but peak of crisis was of course near 1815 – Waterloo, eruption of Tambora, Byron on the Geneva lake create new genre with Shelly and her Frankeshtain.) One such crisis happened in 1945 (dated 1950 in Panov’s paper – as a date of not the beginning of the crisis, but a date of exit from it and creation of new reality) when the collapse of fascism occurred and arose computers, rockets and atomic bomb, and bipolar world. An important feature of these crises is that they follow a simple law: namely, the next crisis is separated from the preceding interval of time to 2.67+/- 0.15 shorter. The last such crisis occurred in the vicinity of 1991 (1994 if use Panov’s formula from the article), when the USSR broke up and began the march of the Internet. However, the schedule of crisis lies on the hyperbole that comes to the singularity in the region in 2020 (Panov gave estimate 2004+/-15, but information about 1991 crisis allows to sharpen the estimate). If this trend continues to operate, the next crisis must come after 17 years from 1991 , in 2008, and another- even after 6.5 years in 2014 and then the next in 2016 and so on. Naturally it is desirable to compare the Panov’s forecast and the current financial crisis.
Current crisis seems to change world politically and technologically, so it fit to Panov’s theory which predict it with high accuracy long before. (At least at 2005 – but as I now Panov do not compare this crisis with his theory.) But if we agree with Panov’s theory we should not expect global catastrophe now, but only near 2020. So we have long way to it with many crisises which will be painful but not final. Continue reading “From financial crisis to global catastrophe” | >

About

DIYbio is an organization that aims to help make biology a worthwhile pursuit for citizen scientists, amateur biologists, and DIY biological engineers who value openness and safety. This will require mechanisms for amateurs to increase their knowledge and skills, access to a community of experts, the development of a code of ethics, responsible oversight, and leadership on issues that are unique to doing biology outside of traditional professional settings.

What is DIYbio in 4 minutes?

Get Involved

You can read about current events and developments in the DIYbio community by reading or subscribing to the blog.

Get in contact or get involved through discussions on our mailing list, or by attending or hosting a local DIYbio meetup.

The mailing list is the best way to find out what’s happening with DIYbio right now. There is also a low-traffic announce list.

Find out about our featured projects, including our plans for public wetlabs, global FlashLab experiments, and our innovation of next-gen lab equipment on the Projects page.

Ugolog Creates Surveillance Website To Watch Anyone, Anywhere

Written on April 28, 2009 – 2:43 am | by keith kleiner |

big_brother

What if people all over the world randomly decided to setup motion detection webcams and then send feeds from these webcams to a single website that would centralize the video data for anyone to search, view, and manipulate? Hot off of the heels of our story yesterday about the implications of cameras recording everything in our lives comes a website called Ugolog that does exactly this. The concept is both spooky and captivating all at once. The privacy implications are just out of control, opening the door to all sorts of immoral and illegal invasions of people’s privacy. On the other hand, the power and usefulness of such a network is extremely compelling.

When you go to the Ugolog website you are immediately impressed with the simplicity of the site (I sure hope they keep it this way!). No advertisements, no stupid gimmicks, no complicated interface. The site offers a bare bones, yet elegant design that allows you to do one thing quickly and easily: setup a motion detecting webcam and send the feed to Ugolog. No software is required, only a web browser and a properly configured camera. Don’t know how to setup the camera? No problem! The site has tutorials that tell you everything you need to know. Once Ugolog has a feed from one or more of your cameras, the data will be available for you and anyone else in the world to view along with all of the other feeds on the site.

Photo From Ugolog "how to build a spy camera" manual

Photo From Ugolog “how to build a spy camera” manual

No big deal, many will say! Its just like Justin.tv — the website that already carries thousands of live video feeds from all over the world, boasting more than 80,000 simultaneous viewers earlier today. Yet if you think about this a bit more, you will see that there is indeed a difference between Ugolog and Justin.tv. The difference is their focus — the type of content that the two sites will offer.

Justin.tv offers all sorts of video feeds, including news, sports, random idiots doing stupid random things, and pretty much anything else you can imagine. This is a useful and powerful model, yet Justin.tv’s focus on serving up all kinds of video leaves it open to attack by more narrowly focused sites. Ugolog focuses only on surveillance video. By targeting this specific category of video the site just might be able to carve out a unique niche in the online video space that can really gain some traction. Justin.tv could of course create a category on its site called “surveillance”, but a category on Justin.tv devoted to the surveillance might have difficulty competing with Ugolog’s website, community, and employees devoted completely to surveillance.

Highlighting the specialization available on the site Ugolog founder Alexander Uslontsev says “Compared to sites like Justin.tv and Ustream.com, that work with webcam only, Ugolog works with webcams AND ‘professional’ security cameras that can upload pictures via FTP or HTTP. In this case Ugolog acts only as ‘dropbox’ for images and expects all motion detection and scheduling to be done in camera.”

Ugolog is in beta now and has only recently launched, but the site could easily take off like a rocket in a short amount of time. The idea is powerful. The site is easy, simple, and free. Add this all up and you have a solid recipe for explosive growth in users and content.

Success is not guaranteed, however. Explosive growth can be its own curse, being extremely difficult and expensive to keep up with. Video is especially resource hungry and may keep the folks over at Ugolog (and their wallets) quite overwhelmed.

Another potential stumbling block is the intense legal scrutiny that the site will certainly encounter. We can envision massive feeds of video that invade privacy and break the law showing up on the Ugolog website, creating a virtual feast for lawyers everywhere. One way around this legal mess is probably to allow comprehensive controls over who can see what. Indeed, this appears to be the case at the moment, as most (all?) feeds seem to be currently viewable only by the owner. Yet clearly in the future it will take only the click of a single checkbox to “open a feed” to the public.

Focusing on the positive side for a moment, there are several interesting applications that can come from a site like Ugolog. One such application would be the fulfillment of truly legitimate surveillance needs. Ugolog allows individuals to quickly setup a powerful surveillance system for their own homes. Taking this a step further, perhaps a neighborhood would setup its own surveillance network to increase safety and monitor for theft and other crimes. Consider also more academic applications, such as researchers setting up cameras to monitor glacier growth, animal species patterns, and so on.

Of course the negative and destructive potential of surveillance a la Ugolog is hard to deny. Yet whether we like it or not, ubiquitous video is here to stay. We are increasingly likely to fall under the surveillance of one or more cameras multiple times throughout the day. Ugolog may come and go, but the trend cannot be stopped. Fight the trend if you want, but I for one intend to embrace it!

(Crossposted on the blog of Starship Reckless)

Working feverishly on the bench, I’ve had little time to closely track the ongoing spat between Dawkins and Nisbet. Others have dissected this conflict and its ramifications in great detail. What I want to discuss is whether scientists can or should represent their fields to non-scientists.

There is more than a dollop of truth in the Hollywood cliché of the tongue-tied scientist. Nevertheless, scientists can explain at least their own domain of expertise just fine, even become major popular voices (Sagan, Hawkin, Gould — and, yes, Dawkins; all white Anglo men, granted, but at least it means they have fewer gatekeepers questioning their legitimacy). Most scientists don’t speak up because they’re clocking infernally long hours doing first-hand science and/or training successors, rather than trying to become middle(wo)men for their disciplines.

prometheus

Experimental biologists, in particular, are faced with unique challenges: not only are they hobbled by ever-decreasing funds for basic research while expected to still deliver like before. They are also beset by anti-evolutionists, the last niche that science deniers can occupy without being classed with geocentrists, flat-earthers and exorcists. Additionally, they are faced with the complexity (both intrinsic and social) of the phenomenon they’re trying to understand, whose subtleties preclude catchy soundbites and get-famous-quick schemes.

Last but not least, biologists have to contend with self-anointed experts, from physicists to science fiction writers to software engineers to MBAs, who believe they know more about the field than its practitioners. As a result, they have largely left the public face of their science to others, in part because its benefits — the quadrupling of the human lifespan from antibiotics and vaccines, to give just one example — are so obvious as to make advertisement seem embarrassing overkill.

As a working biologist, who must constantly “prove” the value of my work to credentialed peers as well as laypeople in order to keep doing basic research on dementia, I’m sick of accommodationists and appeasers. Gould, despite his erudition and eloquence, did a huge amount of damage when he proposed his non-overlapping magisteria. I’m tired of self-anointed flatulists — pardon me, futurists — who waft forth on biological topics they know little about, claiming that smatterings gleaned largely from the Internet make them understand the big picture (much sexier than those plodding, narrow-minded, boring experts!). I’m sick and tired of being told that I should leave the defense and promulgation of scientific values to “communications experts” who use the platform for their own aggrandizement.

Nor are non-scientists served well by condescending pseudo-interpretations that treat them like ignorant, stupid children. People need to view the issues in all their complexity, because complex problems require nuanced solutions, long-term effort and incorporation of new knowlege. Considering that the outcomes of such discussions have concrete repercussions on the long-term viability prospects of our species and our planet, I staunchly believe that accommodationism and silence on the part of scientists is little short of immoral.

Unlike astronomy and physics, biology has been reluctant to present simplified versions of itself. Although ours is a relatively young science whose predictions are less derived from general principles, our direct and indirect impact exceeds that of all others. Therefore, we must have articulate spokespeople, rather than delegate discussion of our work to journalists or politicians, even if they’re well-intentioned and well-informed.

Image: Prometheus, black-figure Spartan vase ~500 BCE.

If you ever swore to yourself (or to another) that you’d never get a tattoo, you may just want to reconsider. You may within just a couple of years have a very good reason to get one made out of “nanoink”.

As recently reported on Discovery News, “nanoink” allows for monitoring blood glucose in real-time right under the skin. It does so by using a hydrophobic nanoparticle that changes colors as glucose levels rise and fall. The ink consists of a glucose-detecting molecule, a color changing dye and a molecule that mimics glucose. These three particles continuously swish around inside a 120-nm orb. When glucose is present, the glucose-detecting molecule attaches and glows yellow; if absent, the ink turns orange.

The use of this technology has the advantage over traditional glucose monitoring, of course, in that there is a one-time needle stick for placing the tattoo over the tens of thousands of sticks that a diabetic will need to have over a lifetime.

Another advantage of nanoink tattooing: they can be removed. At least one researcher from Brown University has developed tattoo ink with microencapsulated beads coated with a polymer that when broken with a single laser treatment can simply be expelled from the body, as opposed to multiple laser removal treatments for conventional tattoos.

Diabetes isn’t the only disease candidate for using this technology. The original research involving nanoink tattoos was for monitoring sodium levels in the body, but then it occurred to researchers that glucose could be infinitely more useful as a disease target. The potential uses for “nanoink” as a monitoring technology are almost limitless; for chronic disease monitoring, once the concept can be proven to work for more complex molecules such as glucose, almost any disease could be monitored from heart disease to hyperthyroid to various blood disorders.

According to the researchers at Draper Laboratories studying this technology, the tattoo doesn’t have to be a huge Tweety bird on your ankle or heart on your shoulder; in fact, according to one of the Draper researchers, the tattoo could be just a “few millimeters in size and wouldn’t have to go as deep as a normal tattoo”.
Disease monitoring nano-tattoos, therefore, can be both tiny and painless. Of course, they could be stylish, too, but the nanoink is likely to cost a pretty penny—so before you are imagine a giant tribal arm stamp to monitor your heart disease, you may have to think again.

It may be at least two years before tattoos for monitoring your diabetes are available on the market—so unfortunately, those strips and sticking of fingers and thumbs aren’t going away for diabetics any time soon. But hopefully, someday in the not so distant future, nanotechnology will make the quality of life just a little bit better for diabetics and perhaps improve the disease management for other chronic diseases like heart disease and others as well. In the meantime, you can dream up what you want your “nanoink” tattoo to look like.

Summer Johnson, PhD
Column Editor, Lifeboat Foundation
Executive Managing Editor, The American Journal of Bioethics