Project Sunroof maps out how much sun and shade hit homes on any given day. Head here to See how much shine your home gets and if solar power is good for you.
Project Sunroof maps out how much sun and shade hit homes on any given day. Head here to See how much shine your home gets and if solar power is good for you.
Videos of creepy robots trying their best to walk like humans (with absolutely no help from their abusive owners) are nothing new, but this new footage of the Atlas humanoid walking robot, developed by Google-owned company Boston Dynamics, is a game changer.
Usually these videos are shot in a lab, or on a treadmill — an artificial environment where the terrain that the robot is walking on can be controlled and maintained.
However, the latest video from the Boston Dynamics team, which gets funding from the US Defence budget, shows the Atlas robot running through a real forest.
Quoted: “Sometimes decentralization makes sense.
Filament is a startup that is taking two of the most overhyped ideas in the tech community—the block chain and the Internet of things—and applying them to the most boring problems the world has ever seen. Gathering data from farms, mines, oil platforms and other remote or highly secure places.
The combination could prove to be a powerful one because monitoring remote assets like oil wells or mining equipment is expensive whether you are using people driving around to manually check gear or trying to use sensitive electronic equipment and a pricey a satellite internet connection.
Instead Filament has built a rugged sensor package that it calls a Tap, and technology network that is the real secret sauce of the operation that allows its sensors to conduct business even when they aren’t actually connected to the internet. The company has attracted an array of investors who have put $5 million into the company, a graduate of the Techstars program. Bullpen Capital led the round with Verizon Ventures, Crosslink Capital, Samsung Ventures, Digital Currency Group, Haystack, Working Lab Capital, Techstars and others participating.
“This cluster of technologies is what enables the Taps to perform some pretty compelling stunts, such as send small amounts of data up to 9 miles between Taps and keep a contract inside a sensor for a year or so even if that sensor isn’t connected to the Internet. In practical terms, that might mean that the sensor in a field gathering soil data might share that data with other sensors in nearby fields belonging to other farmers based on permissions the soil sensor has to share that data. Or it could be something a bit more complicated like a robotic seed tilling machine sensing that it was low on seed and ordering up another bag from inventory based on a “contract” it has with the dispensing system inside a shed on the property.
The potential use cases are hugely varied, and the idea of using a decentralized infrastructure is fairly novel. Both IBM and Samsung have tested out using a variation of the blockchain technology for storing data in decentralized networks for connected devices. The idea is that sending all of that data to the cloud and storing it for a decade or so doesn’t always make economic sense, so why not let the transactions and accounting for them happen on the devices themselves?
That’s where the blockchain and these other protocols come in. The blockchain is a great way to store information about a transaction in a distributed manner, and because its built into the devices there’s no infrastructure to support for years on end. When combined with mesh radio technologies such as TMesh it also becomes a good way to build out a network of devices that can communicate with each other even when they don’t have connectivity.”
Read the Article, and watch the Video, here > http://fortune.com/2015/08/18/filament-blockchain-iot/
Graphene is not the only game in town.
Two new developments show that the race is on to replace silicon as the go-to semiconductor of choice with other 2D materials if not graphene.
Posted in space
Posted in bioengineering, evolution
Synthetic biology is radical and has huge potential to revolutionize multiple industries. The fact is biology has already worked out efficient ways of doing things, or has in place mechanisms we can adapt, so why reinvent anything if we can simply adapt what’s already here? Using billions of years of evolution makes logical sense, and that’s what synthetic biology builds on.
So here is a great video by Grist, explaining what synthetic biology is and what we might be able to do with it in the future.
If you pry open one of today’s ubiquitous high-tech devices—whether a cellphone, a laptop, or an electric car—you’ll find that batteries take up most of the space inside. Indeed, the recent evolution of batteries has made it possible to pack ample power in small places.
But people still always want their devices to last even longer, or go further on a charge, so researchers work night and day to boost the power a given size battery can hold. Rare, but widely publicized, incidents of overheating or combustion in lithium-ion batteries have also highlighted the importance of safety in battery technology.
Now researchers at MIT and Samsung, and in California and Maryland, have developed a new approach to one of the three basic components of batteries, the electrolyte. The new findings are based on the idea that a solid electrolyte, rather than the liquid used in today’s most common rechargeables, could greatly improve both device lifetime and safety—while providing a significant boost in the amount of power stored in a given space.
“I am excited to introduce the first wave of TechLuxe in a form of a resin handbag with an LCD video screen. The idea is to radically bring technology to fashion, but with creative beauty within a functional beautifully designed bag.”