Toggle light / dark theme

Eric Larsen heads research in society and technology at Mercedes-Benz Research and Development in Sunnyvale, Calif. He says that while vehicles will be shared, Americans are not likely to give up their own cars.

“We don’t think people will give up their own cars. Americans like to do everything in the cars. They eat in cars, they drink in cars, they have entertainment in cars and they change clothes in cars — people who leave the office at lunch and sleep in their cars, or wait in their cars for an hour at a time for their children. Driving is really the distracting thing we do in cars.” Read more

Startship controlled by a tractor beam

Levitation and the defiance of gravity is possible. If until now levitation was just a magic act or circus “reality” or, tractor beam technology existed just in sci-fi movies, recently, a team of Japanese researchers have demonstrated the first technology that not only brings the mythology of levitation to life but leap frogs it to create a tractor beam, lifting and moving objects across 3 dimensions using sound alone.

The essence of levitation technology is the countervailing of gravity. By stoping gravity, levitation is possible. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers.

Read more

I have mentioned mTOR as one of the main aging genes on multiple occasions. It’s about time I tell you what it is, what it does and why it is so important in aging.

mTOR has a little m in front of TOR, which means I am speaking about mammals. It technically means «mechanistic» TOR, but think of it as the molecule that mice and all of us have, whereas in worms is it just TOR.

mTOR gene produces one mTOR protein that can act in two pretty different ways. mTOR does so, because it forms two complexes with other molecules. These complexes are called mTORC1 and mTORC2. Yeah, I know, it’s a lot of letters, but C1 and C2 stand for «complex 1» and «complex 2», so it kinda makes sense.

So, how are these complexes different? For starters, they have different proteins that are part of the complexes, and these differences define the drastic variance in functions.

mTOR is one of the most studied genes that the scientists have known about for decades, however we still don’t know much about how those complexes react to different signals in the cells, especially mTORC2. We know much more about what the first complex does, but not really a lot about the second complex. This is not good, because both of them play a huge, enormous role in aging and in age-related disease like cancer and metabolic disorders like diabetes.

Read more