Menu

Blog

Page 1211

Feb 16, 2024

Lockheed Martin ramping up small satellite production

Posted by in categories: business, military, satellites

WASHINGTON — Lockheed Martin is experiencing a growth spurt in an unexpected corner of its business: small satellites. While traditionally known for its expertise in GPS and giant geostationary (GEO) satellites, the company has quietly built a backlog of 100 smallsats on order from Department of Defense and intelligence customers.

“This is probably a different picture than many of you may have in our minds” about what the company does, Johnathon Caldwell, head of Lockheed Martin’s military space business, told a military conference Feb. 14.

Speaking at the Air & Space Forces Association’s Warfare Conference in Aurora, Colorado, Caldwell said a greater focus on small satellites began with the company’s pursuit of Space Development Agency contracts. SDA is building a proliferated mesh network of satellites in low Earth orbit for the Defense Department, and unlike traditional cost-plus defense programs, the agency demands fixed-price bids from satellite manufacturers.

Feb 16, 2024

Viasat completes first broadband upgrade on military sealift fleet

Posted by in category: military

WASHINGTON — Viasat announced it completed the first satellite broadband upgrade on board a Military Sealift Command ship, and expects to update 105 vessels over the next year. The work is part of a $578 million contract that Inmarsat won in 2022 before it was acquired by rival satellite operator Viasat.

The U.S. Navy’s sealift organization, responsible for providing ocean transportation to the Department of Defense, operates a fleet of approximately 125 civilian-crewed ships that replenish Navy vessels at sea, transporting military equipment and personnel, and strategically positioning cargo around the world.

Viasat is revamping the ships’ satellite network from Ku-band to the company’s Global Xpress Ka-band and the ELERA L-band systems.

Feb 16, 2024

Voltage Control over Magnons

Posted by in categories: computing, materials

Researchers have demonstrated that magnetic spin waves called magnons can be controlled by voltage and thus could operate more efficiently as information carriers in future devices.

Magnonic devices are being developed to transmit signals, not with electrons, but with magnons—traveling waves in the magnetic ordering of a material. New work provides one of the missing elements of the magnonics toolbox: a voltage-controlled magnon transistor [1]. The device is made up of a magnetic insulator sandwiched between two metal plates. The researchers show that they can control the flow of magnons in the insulator through voltages applied to the plates. The results could lead to more-efficient magnonic devices.

A magnon can be imagined as a row of fixed magnetic elements, or “spins,” that tilt and rotate their orientations in a coordinated pattern. This “spin wave” can carry information through a material without involving the movement of charges, which can cause undesirable heating in a circuit. Magnonics—though still in its infancy—is a potentially energy-efficient alternative to traditional electronics, says Xiu-Feng Han from the Chinese Academy of Sciences. The challenge right now for the magnonics field, he says, is developing practical versions of the four basic components of a magnonic circuit: a generator, a detector, a switch, and a transistor.

Feb 16, 2024

How Lasers Could Build Heavy Elements

Posted by in category: futurism

Laser-generated nucleosynthesis remains out of reach of present-day technology—but more powerful lasers could eventually make it possible.

Feb 16, 2024

Diamond quantum memory with Germanium vacancy exceeds coherence time of 20 ms

Posted by in categories: chemistry, particle physics, quantum physics

The color centers of diamond are the focus of an increasing number of research studies, due to their potential for developing quantum technologies. Some works have particularly explored the use of negatively-charged group-IV diamond defects, which exhibit an efficient spin-photon interface, as the nodes of quantum networks.

Researchers at Ulm University in Germany recently leveraged a Germanium vacancy (GeV) center in diamond to realize a . The resulting quantum memory, presented in a Physical Review Letters paper, was found to exhibit a promising coherence time of more than 20 ms.

“Our research group’s primary focus is the exploration of diamond color centers for quantum applications,” Katharina Senkalla, co-author of the paper, told Phys.org. “The most popular defect of diamond so far has been the nitrogen-vacancy center, but, recently, other color centers have also become a focus of research. These consist of an element from the IV column of the periodic table—Si, Ge, Sn or Pb, and a lattice vacancy (i.e., missing next-neighbor carbon atom).”

Feb 16, 2024

Harnessing light with hemispherical shells for improved photovoltaics

Posted by in categories: computing, solar power, sustainability

In the pursuit of sustainable energy solutions, the quest for more efficient solar cells is paramount. Organic photovoltaic cells have emerged as a promising alternative to traditional silicon-based counterparts due to their flexibility and cost-effectiveness. However, optimizing their performance remains a significant challenge.

In a pioneering move, new research from Abdullah Gül University (Türkiye) reimagines the structure of organic photovoltaic cells, opting for a hemispherical shell shape to unlock unprecedented potential in and angular coverage.

As reported in the Journal of Photonics for Energy, this innovative configuration aims to maximize light absorption and angular coverage, promising to redefine the landscape of renewable energy technologies. The study presents advanced computational analysis and comparative benchmarks to spotlight the remarkable capabilities of this new design.

Feb 16, 2024

5,000 atoms are all you need: The smallest solid-state ferroelectricity

Posted by in category: particle physics

Recent research has broken the size limitation of traditional ferroelectric effects, providing experimental evidence and theoretical simulations to confirm that a structure with as few as 5,000 atoms can still exhibit solid-state ferroelectric effects.

The studies, by a joint team from Israel and China, are published in Nature Electronics and Nature Communications under the titles “Ferroelectricity in zero-dimensional” and “0D van der Waals interfacial sliding Ferroelectricity,” respectively.

The ferroelectric effect is a physical phenomenon discovered in the early 20th century by Joseph Valasek, and it provides an important technological route for achieving information storage. Traditional ferroelectric effects are subject to size limitations.

Feb 16, 2024

Fermi Paradox: The Impossible Earth hypothesis

Posted by in categories: computing, existential risks, life extension

The aliens haven’t contacted us because they have uploaded themselves into digital information where they live forever anf create simulated universes that they live in or they upload themselves into femto tech level computational substrates and they could surround us.


Is Earth impossible? An exploration of the impossible earth hypothesis and its implications on science and existence.

Continue reading “Fermi Paradox: The Impossible Earth hypothesis” »

Feb 16, 2024

Understanding Immune Fitness and Age to Improve Breast Cancer Outcomes

Posted by in category: biotech/medical

This CU Cancer Center symposium was presented by Sandra McAllister, PhD, assistant professor of medicine at the Harvard Medical School, and associate scientist at Brigham \& Women’s Hospital.

Feb 16, 2024

BASE TTS: Audio samples

Posted by in category: habitats

Audio samples for the paper “BASE TTS: Lessons from building a billion-parameter text-to-speech model on 100K hours of data

Abstract: We introduce a text-to-speech (TTS) model called BASE TTS, which stands for Big Adaptive Streamable TTS with Emergent abilities. BASE TTS is the largest TTS model to-date, trained on 100K hours of public domain speech data, achieving a new state-of-the-art in speech naturalness. It deploys a 1-billion-parameter autoregressive Transformer that converts raw texts into discrete codes (“speechcodes”) followed by a convolution-based decoder which converts these speechcodes into waveforms in an incremental, streamable manner. Further, our speechcodes are built using a novel speech tokenization technique that features speaker ID disentanglement and compression with byte-pair encoding. Echoing the widely-reported “emergent abilities” of large language models when trained on increasing volume of data, we show that BASE TTS variants built with 10K+ hours and 500M+ parameters begin to demonstrate natural prosody on textually complex sentences.