Following the FDA’s recent approval, human trials are expected to begin by the end of the year.
The battlefield can be one of the most useful places for robots. And now, the US Marines are testing out Spot, a robo dog built by Boston Dynamics to see how helpful the ‘bot could be in combat.
Remember Big Dog, also from Google-owned robotics company Boston Dynamics? Well, Spot is a tinier, more agile iteration: At 160 pounds, it’s hydraulically actuated with a sensor on its noggin that aids in navigation. It’s controlled by a laptop-connected game controller, which a hidden operator can use up to 1,600 feet away. The four-legged all-terrain robo pup was revealed in February. Robots in combat aren’t new, but Spot signals a quieter, leaner alternative that hints at the strides made in this arena.
DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology, and more. Researchers have been working to master the ability to coax DNA molecules to self assemble into the precise shapes and sizes needed in order to fully realize these nanotechnology dreams.
For the last 20 years, scientists have tried to design large DNA crystals with precisely prescribed depth and complex features – a design quest just fulfilled by a team at Harvard’s Wyss Institute for Biologically Inspired Engineering. The team built 32 DNA crystals with precisely-defined depth and an assortment of sophisticated three-dimensional (3D) features, an advance reported in Nature Chemistry.
The team used their “DNA-brick self-assembly” method, which was first unveiled in a 2012 Science publication when they created more than 100 3D complex nanostructures about the size of viruses. The newly-achieved periodic crystal structures are more than 1000 times larger than those discrete DNA brick structures, sizing up closer to a speck of dust, which is actually quite large in the world of DNA nanotechnology.
Adobe has made a video with its vision for the future of its tablet-based graphic applications. Photoshop, Illustrator, Premiere… it is really amazing, almost unbelievable—borderline magical, really. Check it out.
If they achieve a fraction of what is show here, I would be happy. I have no doubt that all the features will happen eventually, but I want them all right now.
Touchless gestures powered by ultrasound has become a mark of distinction for Elliptic Labs. The company has new “Multi Layer Interaction” technology designed to bring users intuitive device interactions.
Without touching the device, the person’s hand moves towards the smartphone, the screen lights up and information is displayed. As the person continues moving the hand closer, different information is revealed. With users constantly, frequently, eagerly reaching for their devices throughout the day, Elliptic Labs aims to make a difference in its easy and fast way to get information, from playing games to navigating maps, to using social media, to watching videos. A promotional video says the user can interact above, in front, underneath, double-tapping anywhere around the device, easily turning the device on and off as well. There is an SDK kit for applications. How it works: Ultrasound signals sent through the air from speakers integrated in smartphones and tablets bounce against the hand and are recorded by microphones integrated in the devices. As such, the technology recognizes hand gestures and uses them to move objects on the screen, similar to how bats use echolocation to navigate.
The company also talks about range-gating capabilities, saying that their touchless gesturing technology can easily separate foreground from background, for separating finger motion from wrist, and hand motion from movements or reflections from the body. This prevents unwanted and accidental gestures from being recognized. Overall, the company believes that “Ultrasound offers the best combination of high resolution, 180-degree interaction space, and low power consumption compared to camera or other sensing technologies.” They use an ultra-low power audio SoC for ultrasound processing such as Wolfson audio hubs. They have formed partnerships with Murata Manufacturing and Wolfson Microelectronics.
The Solar City Tower, designed by RAFAA, includes a bank of solar panels as well as pumped water storage to create energy during both the day and night for use in the Olympic Village.
Algolux is a company aiming to tackle blurring problems through computational optics. Algolux said its efforts are presently focused on smartphones and tablets. One can appreciate how this company sees their technology attracting interest in this way. The technology allows for lens designs to be less complex, smaller, lighter and cheaper which would be especially interesting in smartphone imaging where space is at a premium, said Connect, a website on mobile photography technology. The company tells site visitors that “Our computational optics enable better pictures, thinner cameras and cheaper optics.” The technology allows manufacturers’ devices to capture clearer pictures with their existing equipment, including in low-light conditions. Also, the quantity and quality of optical elements needed are diminished; manufacturers can obtain desirable results at a lower cost.
Traditional optics have hit a wall, according to the company. Their size can no longer be reduced significantly for cameras inside thin devices such as smartphones and tablets.”Lenses in smart devices are small and plastic (for the most part), and do not have the quality of a full-sized optical system, especially for low-light and night-time pictures. As sensors and pixels get smaller, the probability of blur and other aberrations in pictures increases.”
Algolux Virtual Lens corrects optical aberrations through software, for sharper photos. Algolux Virtual IS corrects motion blur and shutter shake, which may be experienced in low light conditions. Virtual Lens takes care of image quality while Virtual IS software takes care of image stabilization. All in all, the company has software and computational imaging techniques that correct for blurring, distortion and other aberrations.
The U.S. military doesn’t just build big, scary tanks and giant warplanes; it’s also interested in teeny, tiny stuff. The Pentagon’s latest research project aims to improve today’s technologies by shrinking them down to microscopic size.
The recently launched Atoms to Product (A2P) program aims to develop atom-size materials to build state-of-the-art military and consumer products. These tiny manufacturing methods would work at scales 100,000 times smaller than those currently being used to build new technologies, according to the Defense Advanced Research Projects Agency, or DARPA.
The tiny, high-tech materials of the future could be used to build things like hummingbird-size drones and super-accurate (and super-small) atomic clocks — two projects already spearheaded by DARPA. [Humanoid Robots to Flying Cars: 10 Coolest DARPA Projects].
(Phys.org) —Scientists at the University of Bristol have developed a process where reagents are added to a growing carbon chain with extraordinary high fidelity and precise orientation, thereby controlling the conformation of the molecule so that it adopts a helical or linear shape. The process can be likened to a molecular assembly line.
Nature has evolved highly sophisticated machinery for organic synthesis. One of the most beautiful examples is its machinery for the synthesis of polyketides, a very important class of molecules due to their broad spectrum of biological activities (for example antibiotic, antitumor, antifungal, antiparasitic).
In this process, a simple thioester (small building block) is passed from one enzyme domain to another, growing as it does so until the target molecule is formed. The process resembles a molecular assembly line.