Menu

Blog

Page 12060

Feb 19, 2010

Small steps that can make difference on global catastrophes

Posted by in category: existential risks

Danila Medvedev asked me to make a list of actual projects that can reduce the likelihood of global catastrophe.

EDITED: This list reflects only my personal opinion and not opinion of LF. Suggeted ideas are not final but futher discussion on them is needed. And these ideas are mutual independed.

1. Create the book “Guide to the restoration of civilization”, which describe all the necessary knowledge of hunting, industry, mining, and all the warnings about the risks for the case of civilization collapse.Test its different sections on volunteers. Print the book in stone / metal / other solid media in many copies throughout the world. Bury treasure with the tools / books / seeds in different parts of the world. 1–100 million USD. Reduction of probability of extinction (assuming that real prior probability is 50% in XXI century): 0.1%.
2. Collect money for the work of Singularity Institute in creating a Friendly AI. They need 3 million dollars. This project has a maximum ratio of the cost-impact. That is, it can really increase the chances of survival of humanity at about 1 percent. (This is determined by the product of estimates of the probabilities of events — the possibility of AI, what SIAI will solve this problem, the fact that it chooses the problem first, and that it solves the problem of friendliness, and the fact that the money they have will be enough.)
3. Krisave in the ice of Antarctica (the temperature of −57 C, in addition, you can create a stable region of lower temperature by use of liquid nitrogen which would be pumped and cooled it) a few people, so that if on earth there another advanced civilization, it could revive them. cost is several million dollars. Another project on the preservation of human knowledge in the spirit of the proposed fund by LongNow titanium discs with recorded information.
4. Send human DNA on the moon in the stable time capsule. Several tens of millions of dollars. You can also send the criopreserved human brain. The idea here is that if mankind would perish, then someday the aliens arrive and revive people based on these data. Expenses is 20–50 million dollars, the probability of success of 0.001%. Send human DNA in space in other ways.
5. Accelerated development of universal vaccines. Creation of the world’s reserves of powerful means of decontamination in the event of a global epidemic, the stockpiling antvirus drugs and vaccines to the majority of known viruses, which would be enough for a large part of humanity. Establishment of virus monitoring and instant diagnosis (test strips). Creation and production of many billions of pieces of advanced disinfecting tools such as personal UV lamps, nanotech dressing for the face, gloves, etc. The billions or hundreds of billions of dollars a year. Creating personal stockpiles of food and water at each house for a month. Development of supply system with no contact of people with one another. Jump to slow global transport (ships) in the event of a pandemic. Training of medical personnel and the creation of spare beds in hospitals. Creating and testing on real problems huge factories, which in a few weeks can develop and produce billions of doses of vaccines. Improvement of legislation in the field of quarantine. There are also risks. Increase the probability of survival 2–3 percent.
6. Creating a self-contained bunker with a supply of food for several decades and with the constant “crews”, able to restore humanity. About $ 1 billion. Save those types of resources that humanity could use the post-apocalyptic stage for recovery.
7. The creation of scientific court for Hadron Collider and other potentially dangerous projects, in which the theoretical physicist will be paid large sums of money for the discovery of potential vulnerabilities.
8. Adaptation of the ISS function for bunker in case of disasters on Earth — the creation of the ISS series of additional modules, which may support the existence of the crew for 10 years. Cost is tens of billions of dollars.
9. Creation of an autonomous self-sustaining base on the Moon. At the present level of technology — about $ 1 trillion or more. Proper development of strategy of space exploration would cheapen it — that is, investments in new types of engines and cheap means of delivery. Increase survival by 1 percent. (But there are also new risks).
10. The same is true on Mars. Several trillion. Increase survival of 1–2 per cent.
11. Creating star nuclear Ark ship- — tens of trillions of dollars. Increase survival of 1–2 per cent.
12. (The following are items for which are not enough money, but political will is also needed.) Destruction of rogue states and the establishment of a world state. 10 percent increase in survival. However, the high risks in the process.
13. Creating a global center for rapid response to global risks. Something like Special Forces or the Ministry of Emergency Situations, which can throw on the global risks. Enable it to instant action, including the hostilities, as well as intelligence. Giving its veto on the dangerous experiments. Strengthening of civil defense in the field.
14. The ban on private science (in the sense in the garage) and the creation of several centers of certified science (science town with centralized control of security in the process) with a high level of funding of breakthrough research. In the field of biotechnology, nuclear technology, artificial intelligence and nano. This will help prevent the dissemination of knowledge of mass destruction, but it will not stop progress. It is only after the abolition of nation states. A few percent increase in survival. These science towns can freely exchange technical information between themselves, but do not have the right to release it into the outside world.
15. The legislation required the duplication of a vital resource and activities — which would make impossible the collapse of civilization in a domino effect on failure at one point. The ban on super complex system of social organization, whose behavior is unpredictable and too prone to a domino effect, and replace them on the linear repetitive production system — that is, opposition to economic globalization.
16. Certification and licensing researchers in bio, nano, AI and nuclear technologies. Legislative requirement to check all their own and others’ inventions for the global risks associated with them, and the commitment to develop both a means of protection in the event of their inventions go out of control.
17. Law on raising intelligence of people half the population of fertilization from a few hundred of the best fathers in terms of intelligence and common sense and dislike of the risks. (Second half of the breed in the usual manner to maintain genetic diversity, the project is implemented without violence due to cash payments.) Plus education reform, where the school is replaced by a system of training, which given the important role of good sense and knowledge of logic.
18. Limitation of capitalist competition as the engine of the economy, because it leads to an underestimation of risk in the long term.
19. Leading investment in the field like nanotechnology breakthrough in the best and most critical facilities, to quickly slip dangerous period.
20. The growth of systems of information control and surveillance of the total, plus the certification data in them, and pattern recognition. Control of the Internet and the personal authorization for network logons. Continuous monitoring of all persons who possess potentially dangerous knowledge.
This could be creating a global think tank from the best experts on global risks and the formulation of their objectives to develop a positive scenario. Thus it is necessary to understand which way to combine these specialists would be most effective, so A) they do not eat each other because of different ideas and feelings of their own importance. B) that it does not become money feedbox. B) but that they received money for it, which would allow them to concentrate fully on this issue. That is, it should be something like edited journal, wiki, scientific trial or predictions market. But the way of association should not be too exotic, as well as exotic ways should be tested on less important matters.
However, the creation of accurate and credible for all models of the global risk would reduce by at least twice the probability of global catastrophe. And we are still at the stage of creating such a model. Therefore, how to create models and ways of authentication are now the most important, though, may have already been lost.
I emphasize that the main problems of global risks lies within the scope of knowledge, rather than to the sphere of action. That is the main problem that we do not know where we should prepare, not that we do not have instrument of defence. Risks are removed by the knowledge and expertise.
Implementation of these measures is technically and economically possible and could reduce the chance of extinction in the XXI century, in my estimation, 10 times.

Any ideas or missed projects?

Jan 18, 2010

Filling the Gaps in “Global Trends 2025″

Posted by in categories: futurism, geopolitics, nanotechnology

Because of the election cycle, the United States Congress and Presidency has a tendency to be short-sighted. Therefore it is a welcome relief when an organization such as the U.S. National Intelligence Council gathers many smart people from around the world to do some serious thinking more than a decade into the future. But while the authors of the NIC report Global Trends 2025: A Transformed World[1] understood the political situations of countries around the world extremely well, their report lacked two things:

1. Sufficient knowledge about technology (especially productive nanosystems) and their second order effects.

2. A clear and specific understanding of Islam and the fundamental cause of its problems. More generally, an understanding of the relationship between its theology, technological progress, and cultural success.
These two gaps need to be filled, and this white paper attempts to do so.

Technology
Christine Peterson, the co-founder and vice-president of the Foresight Nanotech Institute, has said “If you’re looking ahead long-term, and what you see looks like science fiction, it might be wrong. But if it doesn’t look like science fiction, it’s definitely wrong.” None of Global Trends 2025 predictions look like science fiction, though perhaps 15 years from now is not long-term (on the other hand, 15 years is not short-term either).

Continue reading “Filling the Gaps in "Global Trends 2025"” »

Dec 30, 2009

Ark-starship – too early or too late?

Posted by in categories: existential risks, lifeboat, space

It is interesting to note that the technical possibility to send interstellar Ark appeared in 1960th, and is based on the concept of “Blust-ship” of Ulam. This blast-ship uses the energy of nuclear explosions to move forward. Detailed calculations were carried out under the project “Orion”. http://en.wikipedia.org/wiki/Project_Orion_(nuclear_propulsion) In 1968 Dyson published an article “Interstellar Transport”, which shows the upper and lower bounds of the projects. In conservative (ie not imply any technical achievements) valuation it would cost 1 U.S. GDP (600 billion U.S. dollars at the time of writing) to launch the spaceship with mass of 40 million tonnes (of which 5 million tons of payload), and its time of flight to Alpha Centauri would be 1200 years. In a more advanced version the price is 0.1 U.S. GDP, the flight time is 120 years and starting weight 150 000 tons (of which 50 000 tons of payload). In principle, using a two-tier scheme, more advanced thermonuclear bombs and reflectors the flying time to the nearest star can reduce to 40 years.
Of course, the crew of the spaceship is doomed to extinction if they do not find a habitable and fit for human planet in the nearest star system. Another option is that it will colonize uninhabited planet. In 1980, R. Freitas proposed a lunar exploration using self-replicating factory, the original weight of 100 tons, but to control that requires artificial intelligence. “Advanced Automation for Space Missions” http://www.islandone.org/MMSG/aasm/ Artificial intelligence yet not exist, but the management of such a factory could be implemented by people. The main question is how much technology and equipment should be enough to throw at the moonlike uninhabited planet, so that people could build on it completely self-sustaining and growing civilization. It is about creating something like inhabited von Neumann probe. Modern self-sustaining state includes at least a few million people (like Israel), with hundreds of tons of equipment on each person, mainly in the form of houses, roads. Weight of machines is much smaller. This gives us the upper boundary of the able to replicate human colony in the 1 billion tons. The lower estimate is that there would be about 100 people, each of which accounts for approximately 100 tons (mainly food and shelter), ie 10 000 tons of mass. A realistic assessment should be somewhere in between, and probably in the tens of millions of tons. All this under the assumption that no miraculous nanotechnology is not yet open.
The advantage of a spaceship as Ark is that it is non-specific reaction to a host of different threats with indeterminate probabilities. If you have some specific threat (the asteroid, the epidemic), then there is better to spend money on its removal.
Thus, if such a decision in the 1960th years were taken, now such a ship could be on the road.
But if we ignore the technical side of the issue, there are several trade-offs on strategies for creating such a spaceship.
1. The sooner such a project is started, the lesser technically advanced it would be, the lesser would be its chances of success and higher would be cost. But if it will be initiated later, the greater would be chances that it will not be complete until global catastrophe.
2. The later the project starts, the greater are the chance that it will take “diseases” of mother civilization with it (e.g. ability to create dangerous viruses ).
3. The project to create a spaceship could lead to the development of technologies that threaten civilization itself. Blast-ship used as fuel hundreds of thousands of hydrogen bombs. Therefore, it can either be used as a weapon, or other party may be afraid of it and respond. In addition, the spaceship can turn around and hit the Earth, as star-hammer — or there maybe fear of it. During construction of the spaceship could happen man-made accidents with enormous consequences, equal as maximum to detonation of all bombs on board. If the project is implementing by one of the countries in time of war, other countries could try to shoot down the spaceship when it launched.
4. The spaceship is a means of protection against Doomsday machine as strategic response in Khan style. Therefore, the creators of such a Doomsday machine can perceive the Ark as a threat to their power.
5. Should we implement a more expensive project, or a few cheaper projects?
6. Is it sufficient to limit the colonization to the Moon, Mars, Jupiter’s moons or objects in the Kuiper belt? At least it can be fallback position at which you can check the technology of autonomous colonies.
7. The sooner the spaceship starts, the less we know about exoplanets. How far and how fast the Ark should fly in order to be in relative safety?
8. Could the spaceship hide itself so that the Earth did not know where it is, and should it do that? Should the spaceship communicate with Earth? Or there is a risk of attack of a hostile AI in this case?
9. Would not the creation of such projects exacerbate the arms race or lead to premature depletion of resources and other undesirable outcomes? Creating of pure hydrogen bombs would simplify the creation of such a spaceship, or at least reduce its costs. But at the same time it would increase global risks, because nuclear non-proliferation will suffer complete failure.
10. Will the Earth in the future compete with its independent colonies or will this lead to Star Wars?
11. If the ship goes off slowly enough, is it possible to destroy it from Earth, by self-propelling missile or with radiation beam?
12. Is this mission a real chance for survival of the mankind? Flown away are likely to be killed, because the chance of success of the mission is no more than 10 per cent. Remaining on the Earth may start to behave more risky, in logic: “Well, if we have protection against global risks, now we can start risky experiments.” As a result of the project total probability of survival decreases.
13. What are the chances that its computer network of the Ark will download the virus, if it will communicate with Earth? And if not, it will reduce the chances of success. It is possible competition for nearby stars, and faster machines would win it. Eventually there are not many nearby stars at distance of about 5 light years — Alpha Centauri, the Barnard star, and the competition can begin for them. It is also possible the existence of dark lonely planets or large asteroids without host-stars. Their density in the surrounding space should be 10 times greater than the density of stars, but to find them is extremely difficult. Also if nearest stars have not any planets or moons it would be a problem. Some stars, including Barnard, are inclined to extreme stellar flares, which could kill the expedition.
14. The spaceship will not protect people from hostile AI that finds a way to catch up. Also in case of war starships may be prestigious, and easily vulnerable targets — unmanned rocket will always be faster than a spaceship. If arks are sent to several nearby stars, it does not ensure their secrecy, as the destination will be known in advance. Phase transition of the vacuum, the explosion of the Sun or Jupiter or other extreme event can also destroy the spaceship. See e.g. A.Bolonkin “Artificial Explosion of Sun. AB-Criterion for Solar Detonation” http://www.scribd.com/doc/24541542/Artificial-Explosion-of-S…Detonation
15. However, the spaceship is too expensive protection from many other risks that do not require such far removal. People could hide from almost any pandemic in the well-isolated islands in the ocean. People can hide on the Moon from gray goo, collision with asteroid, supervolcano, irreversible global warming. The ark-spaceship will carry with it problems of genetic degradation, propensity for violence and self-destruction, as well as problems associated with limited human outlook and cognitive biases. Spaceship would only burden the problem of resource depletion, as well as of wars and of the arms race. Thus, the set of global risks from which the spaceship is the best protection, is quite narrow.
16. And most importantly: does it make sense now to begin this project? Anyway, there is no time to finish it before become real new risks and new ways to create spaceships using nanotech.
Of course it easy to envision nano and AI based Ark – it would be small as grain of sand, carry only one human egg or even DNA information, and could self-replicate. The main problem with it is that it could be created only ARTER the most dangerous period of human existence, which is the period just before Singularity.

Oct 16, 2009

Productive Nanosystems and the 2009 Financial Meltdown

Posted by in categories: economics, nanotechnology

Introduction
At a fundamental level, real wealth is the ability to fulfill human needs and desires. These ephemeral motivators are responsible for the creation of money, bank ledgers, and financial instruments that drive the world—caveat the fact that the monetary system can’t buy us love (and a few other necessities). Technologies have always provided us with tools that enable us to fulfill more needs and desires for more people with less effort. The exponential nanomanufacturing capabilities of Productive Nanosystems will simply enable us to do it better. Much better.

Productive Nanosystems
The National Nanotechnology Initiative defines nanotechnology as technologies that control matter at dimensions between one and a hundred nanometers, where unique phenomena enable novel applications. For particles and structures, reducing dimensions to the nanoscale primarily affects surface area to volume ratios and surface energies. For active structures and devices, the significant design parameters become exciton distances, quantum effects, and photon interactions. Connecting many different nanodevices into complex systems will multiply their power, leading some experts to predict that a particular kind of nanosystem—Productive Nanosystems that produces atomically precise products—will dramatically change the world.

Productive Nanosystems are programmable mechanoelectrochemical systems that are expected to rearrange bulk quantities numbers of atoms with atomic precision under programmatical control. There are currently four approaches that are expected to lead to Productive Nanosystems: DNA Origami[1], Bis-Peptide Synthesis[2], Patterned Atomic Layer Epitaxy[3], and Diamondoid Mechanosynthesis[4]. The first two are biomimetic bottom-up approaches that struggle to achieve long-range order and to increase complexity despite using chaotic thermodynamic processes. The second two are scanning-probe-based top-down approaches that struggle to increase productivity to a few hundred atoms per hour while reducing error rate.[5]

For the bottom-up approaches, the tipping point will be reached when researchers build the first nanosystem complex enough to do error correction. For the top-down approaches that can do error correction fairly easily, the tipping point will be reached when subsequent generations of tip arrays no longer need to be redesigned for speed and size improvements while using control algorithms that scale well (i.e. they only need generational time, synthesized inputs, and expansion room). When these milestones are reached, nanosystems will grow exponentially—unnoticeably for a few weeks, but suddenly they will become overwhelmingly powerful. There are many significant applications foreseen for mature Productive Nanosystems, ranging from aerospace and transportation to medicine and manufacturing—but what may affect us the hardest may be those applications that we can’t foresee.

Continue reading “Productive Nanosystems and the 2009 Financial Meltdown” »

Oct 8, 2009

Fermi Paradox and global catastrophes

Posted by in category: existential risks

The main ways of solving the Fermi Paradox are:
1) They are already here (at least in the form of their signals)
2) They do not disseminate in the universe, do not leave traces, and not send signals. That is, they do not start a shock wave of intelligence.
3) The civilizations are extremely rare.
Additional way of thinking is 4): we are unique civilization because of observation selection
All of them have a sad outlook for global risk:
In the first case, we are under threat of conflict with superior aliens.
1A) If they are already here, we can do something that will encourage them to destroy us, or restrict us. For example, turn off the simulation. Or start the program of probes-berserkers. This probes cold be nanobots. In fact it could be something like “Space gray goo” with low intelligence but very wide spreading. It could even be in my room. The only goal of it could be to destroy other nanobots (like our Nanoshield would do). And so we will see it until we create our own nanobots.
1b) If they open up our star system right now and, moreover, focused on total colonization of all systems, we are also will fight with them and are likely to lose. Not probable.
1c) If a large portion of civilization is infected with SETI-virus and distributes signals, specially designed to infect naive civilizations — that is, encourage them to create a computer with AI, aimed at the further replication by SETI channels. This is what I write in the article Is SETI dangerous? http://www.proza.ru/texts/2008/04/12/55.html
1d) By the means of METI signal we attract attention of dangerous civilization and it will send to the solar system a beam of death (probably commonly known as gamma-ray burst). This scenario seems unlikely, since for the time until they receive the signal and have time to react, we have time to fly away from the solar system — if they are far away. And if they are close, it is not clear why they were not here. However, this risk was intensely discussed, for example by D. Brin.
2. They do not disseminate in space. This means that either:
2a) Civilizations are very likely to destroy themselves in very early stages, before it could start wave of robots replicators and we are not exception. This is reinforced by the Doomsday argument – namely the fact that I’m discovering myself in a young civilization suggests that they are much more common than the old. However, based on the expected rate of development of nanotechnology and artificial intelligence, we can start a wave of replicators have in 10–20 years, and even if we die then, this wave will continue to spread throughout the universe. Given the uneven development of civilizations, it is difficult to assume that none of them do not have time to launch a wave of replicators before their death. This is possible only if we a) do not see an inevitable and universal threat looming directly on us in the near future, b) significantly underestimate the difficulty of creating artificial intelligence and nanoreplicators. с) The energy of the inevitable destruction is so great that it manages to destroy all replicators, which were launched by civilization — that is it is of the order of a supernova explosion.
2b) Every civilization sharply limit itself — and this limitation is very hard and long as it is simple enough to run at least one probe-replicator. This restriction may be based either on a powerful totalitarianism, or the extreme depletion of resources. Again in this case, our prospects are quite unpleasant. Bur this solution is not very plausible.
3) If civilization are rare, it means that the universe is much less friendly place to live, and we are on an island of stability, which is likely to be an exception from the rule. This may mean that we underestimate the time of the future sustainability of the important processes for us (the solar luminosity, the earth’s crust), and most importantly, the sustainability of these processes to small influences, that is their fragility. I mean that we can inadvertently break their levels of resistance, carrying out geo-engineering activities, the complex physics experiments and mastering space. More I speak about this in the article: “Why antropic principle stopped to defend us. Observation selection and fragility of our environment”. http://www.scribd.com/doc/8729933/Why-antropic-principle-sto…vironment– See also the works of M.Circovic on the same subject.
However, this fragility is not inevitable and depends on what factors were critical in the Great filter. In addition, we are not necessarily would pressure on this fragile, even if it exist.
4) Observation selection makes us unique civilization.
4a. We are the first civilization, because any civilization which is the first captures the whole galaxy. Likewise, the earthly life is the first life on Earth, because it would require all swimming pools with a nutrient broth, in which could appear another life. In any case, sooner or later we will face another first civilization.
4b. Vast majority of civilizations are being destroyed in the process of colonization of the galaxy, and so we can find ourselves only in the civilization which is not destroyed by chance. Here the obvious risk is that those who made this error, would try to correct it.
4c. We wonder about the absence of contact, because we are not in contact. That is, we are in a unique position, which does not allow any conclusions about the nature of the universe. This clearly contradicts the Copernican principle.
The worst variant for us here is 2a — imminent self-destruction, which, however, has independent confirmation through the Doomsday Argument, but is undermine by the fact that we do not see alien von Neuman probes. I still believe that the most likely scenario is a Rare earth.

Oct 1, 2009

Post-human Earth: How the planet will recover from us

Posted by in categories: existential risks, futurism, human trajectories, policy, sustainability


Paul J. Crutzen

Although this is the scenario we all hope (and work hard) to avoid — the consequences should be of interest to all who are interested in mitigation of the risk of mass extinction:

“WHEN Nobel prize-winning atmospheric chemist Paul Crutzen coined the word Anthropocene around 10 years ago, he gave birth to a powerful idea: that human activity is now affecting the Earth so profoundly that we are entering a new geological epoch.

The Anthropocene has yet to be accepted as a geological time period, but if it is, it may turn out to be the shortest — and the last. It is not hard to imagine the epoch ending just a few hundred years after it started, in an orgy of global warming and overconsumption.

Continue reading “Post-human Earth: How the planet will recover from us” »

Sep 25, 2009

Asteroid attack: Putting Earth’s defences to the test

Posted by in categories: asteroid/comet impacts, defense, existential risks

Peter Garretson from the Lifeboat Advisory Board appears in the latest edition of New Scientist:

“IT LOOKS inconsequential enough, the faint little spot moving leisurely across the sky. The mountain-top telescope that just detected it is taking it very seriously, though. It is an asteroid, one never seen before. Rapid-survey telescopes discover thousands of asteroids every year, but there’s something very particular about this one. The telescope’s software decides to wake several human astronomers with a text message they hoped they would never receive. The asteroid is on a collision course with Earth. It is the size of a skyscraper and it’s big enough to raze a city to the ground. Oh, and it will be here in three days.

Far-fetched it might seem, but this scenario is all too plausible. Certainly it is realistic enough that the US air force recently brought together scientists, military officers and emergency-response officials for the first time to assess the nation’s ability to cope, should it come to pass.

Continue reading “Asteroid attack: Putting Earth's defences to the test” »

Sep 1, 2009

Keeping genes out of terrorists’ hands

Posted by in categories: biological, biotech/medical, chemistry, counterterrorism, existential risks, policy

Nature News reports of a growing concern over different standards for DNA screening and biosecurity:

“A standards war is brewing in the gene-synthesis industry. At stake is the way that the industry screens orders for hazardous toxins and genes, such as pieces of deadly viruses and bacteria. Two competing groups of companies are now proposing different sets of screening standards, and the results could be crucial for global biosecurity.

“If you have a company that persists with a lower standard, you can drag the industry down to a lower level,” says lawyer Stephen Maurer of the University of California, Berkeley, who is studying how the industry is developing responsible practices. “Now we have a standards war that is a race to the bottom.”

Continue reading “Keeping genes out of terrorists' hands” »

Aug 17, 2009

A lifeboat for consciousness

Posted by in category: neuroscience

I recently began to worry that something/someone, some field, force, disease, prion, virus, bad luck and/or natural causes could threaten and perhaps destroy the most valuable entity in the universe, an entity more valuable than life itself. Consciousness. What good is life extension without conscious awareness? What is consciousness?

We know the brain works a lot like a computer, with neuron firings and synapses acting like bit states and switches. Brain-as-computer works very well to account for sensory processing, control of behavior, learning and other cognitive functions. These functions may in some cases be non-conscious, and other times associated with conscious experience and control. Scientists seek the distinction – the essential feature, or trick for consciousness.

Some suggest there is no trick, consciousness emerges as a by-product of cognitive computation among neurons. Others say we don’t know, that consciousness may indeed require some feature related to, but not quite the same as neuron-to-neuron cognition.

In either case, humans and other creatures could in principle become devoid of consciousness while maintaining cognitive behaviors, appearing more-or-less normal to outside observers. Such hypothetical non-conscious behaving entities are referred to in literature, films and philosophical texts as ‘zombies’. Philosopher David Chalmers introduced the philosophical zombie, a test case for whether or not consciousness is distinct from cognitive neurocomputation.

Continue reading “A lifeboat for consciousness” »

Jul 26, 2009

Herman Khan about Doomsday Machine

Posted by in categories: defense, geopolitics, military, nuclear weapons, policy

50 years ago Herman Khan coined the term in his book “On thermonuclear war”. His ideas are still important. Now we can read what he really said online. His main ideas are that DM is feasable, that it will cost around 10–100 billion USD, it will be much cheaper in the future and there are good rational reasons to built it as ultimate mean of defence, but better not to built it, because it will lead to DM-race between states with more and more dangerous and effective DM as outcome. And this race will not be stable, but provoking one side to strike first. This book and especially this chapter inspired “Dr. Strangelove” movie of Kubrick.
Herman Khan. On Doomsday machine.