Toggle light / dark theme

Samsung’s already wide product family is getting even bigger thanks to its new chip dubbed the “Samsung Bio-Processor.” As the company tells it, it’s already in mass production and is “specifically designed to allow accelerated development of innovative wearable products for consumers who are increasingly monitoring their health and fitness on a daily basis.” Phew. The announcement post goes on to say that the processor is the first all-in-one health solution chip and that since it’s packing a number of different control and sensor units (like a quintet of Analog Front Ends, a microcontroller unit, digital signal processor and eFlash memory) it can do all these tricks without the need for external processing.

The idea behind the silicon is to be the one-stop wearable fitness resource. Those five AFEs? One keeps track of bioelectrical impedance analysis, while the others focus on volumetric measurements of organs, an electrocardiogram and skin temperature, among other things. Bear in mind that Samsung’s latest smartwatch, the Gear S2, only tracks your heart rate. Same goes for the Apple Watch. Considering how err… interesting Samsung wearables tend to be, a possible scenario here is that the tech giant won’t keep the Bio-Processor all to itself. Nope, the real money here lies in potentially licensing it out to other folks, as it’s wont to do with its other self-made parts.

We won’t have to wait too long to see these in the wild, either: Samsung promises it’ll be packed into devices available early next year. If you’re wondering where, the inevitable follow-up to the aforementioned Gear S2 successor is a pretty likely bet. Whether that shows its face at CES or Mobile World Congress is the real question, though.

Read more

The combination of human and computer intelligence might be just what we need to solve the “wicked” problems of the world, such as climate change and geopolitical conflict, say researchers from the Human Computation Institute (HCI) and Cornell University.

In an article published in the journal Science, the authors present a new vision of human computation (the science of crowd-powered systems), which pushes beyond traditional limits, and takes on hard problems that until recently have remained out of reach.

Humans surpass machines at many things, ranging from simple pattern recognition to creative abstraction. With the help of computers, these cognitive abilities can be effectively combined into multidimensional collaborative networks that achieve what traditional problem-solving cannot.

Read more

New book by NASA JPL Curiosity Rover engineer has some hard truths about U.S. space policy. A good read.


A Mars Curiosity rover team lead at NASA’s Jet Propulsion Laboratory (JPL) writes in a forthcoming first-person narrative that the space agency as a whole “doesn’t do enough flight projects to forge a broad set of practical skills across [NASA].”

Adam Steltzner — a JPL engineer who was a familiar face during the entry, descent and landing (EDL) phase of the Mars Curiosity rover’s triumphant August 2012 landing — is refreshingly candid about U.S. space policy in the new book “The Right Kind of Crazy: A True Story of Teamwork, Leadership, and High-Stakes Innovation.”

“One of the problems with space exploration is that we never have enough iterations to allow us to fully learn from our mistakes,” writes Steltzner, officially, the phase lead and development manager for the Mars Science Laboratory (Curiosity).

Small Form Factor Technology Solves Complexities of Thought-Controlled Leg Prosthetics

Rehabilitation Institute of Chicago has developed the first neural-controlled bionic leg, using no nerve redirection surgery or implanted sensors. It’s a powerful advancement in prosthetics, including motorized knee and ankle, and control enabled by the patient’s own neural signals. Powered by a tiny but powerful Computer-on-Module platform, this thought-controlled prosthetic represents a significant breakthrough in medical embedded design, improving patients’ lives and mobility with a prosthetic that more closely than ever acts like a fully-functioning natural limb.

The technology of prosthetic limbs has come a long way over time, yet options are still limited for leg amputees. While simple peg legs have evolved to more sophisticated and realistic artificial limbs, the patient was forced to undergo nerve surgery or endure invasive implants. And even though the technology to produce through-controlled mechanized arms has existed for some time, the complexities of leg motion have kept it from being successfully applied in leg prosthetics. Without the ability to move and control the knee and ankle, the prosthetic leg remained a passive solution for patients struggling to replicate natural leg motion.

Read more