Menu

Blog

Page 11

Dec 10, 2024

What makes physics beautiful? We asked some top researchers

Posted by in categories: education, quantum physics

They say beauty is in the eye of the beholder – and for physicists, beauty is in numbers.

Pedro Vieira, Clay Riddell Dirac Chair in Theoretical Physics at Perimeter Institute, is currently teaching a non-credit minicourse about ‘beautiful’ papers in physics. The course alternates between lectures on nine influential papers and student-led presentations about how these monumental papers influenced physics.

This is Vieira’s second time running the course and his first time offering it at Perimeter. He says the course is a way to cover spectacular papers while helping students understand the language of quantum field theory.

Dec 10, 2024

Muscle Implants Could Allow Mind-Controlled Prosthetics—No Brain Surgery Required

Posted by in categories: biotech/medical, cyborgs, robotics/AI

A year later, he got a myoelectric arm, a type of prosthetic powered by the electrical signals in his residual limb’s muscles. But Smith hardly used it because it was “very, very slow” and had a limited range of movements. He could open and close the hand, but not do much else. He tried other robotic arms over the years, but they had similar problems.

“They’re just not super functional,” he says. “There’s a massive delay between executing a function and then having the prosthetic actually do it. In my day-to-day life, it just became faster to figure out other ways to do things.”

Recently, he’s been trying out a new system by Austin-based startup Phantom Neuro that has the potential to provide more lifelike control of prosthetic limbs. The company is building a thin, flexible muscle implant to allow amputees a wider, more natural range of movement just by thinking about the gestures they want to make.

Dec 10, 2024

Shape-changing device helps visually impaired people perform location task as well as sighted people

Posted by in categories: chemistry, economics, energy, sustainability

Water electrolysis is a cornerstone of global sustainable and renewable energy systems, facilitating the production of hydrogen fuel. This clean and versatile energy carrier can be utilized in various applications, such as chemical CO2 conversion, and electricity generation. Utilizing renewable energy sources such as solar and wind to power the electrolysis process may help reduce carbon emissions and promote the transition to a low-carbon economy.

The development of efficient and stable anode materials for the Oxygen Evolution Reaction (OER) is essential for advancing Proton Exchange Membrane (PEM) water electrolysis technology. OER is a key electrochemical reaction that generates oxygen gas (O₂) from water (H₂O) or hydroxide ions (OH⁻) during water splitting.

This seemingly simple reaction is crucial in energy conversion technologies like as it is hard to efficiently realize and a concurrent process to the wanted hydrogen production. Iridium (Ir)-based materials, particularly amorphous hydrous oxide (am-hydr-IrOx), are at the forefront of this research due to their high activity. However, their application is limited by high dissolution rates of the precious iridium.

Dec 10, 2024

When the lights turned on in the universe

Posted by in category: cosmology

By studying ancient, supermassive black holes called quasars, MIT PhD student Dominika Ďurovčíková is illuminating an early moment in the universe, when the galaxies could first be observed.

Dec 10, 2024

Breakthrough AI decodes videos like a human brain with 82% accuracy

Posted by in categories: innovation, robotics/AI

MovieNet mimics the brain to analyze dynamic scenes with exceptional accuracy.


By simulating how the human brain processes a moving world, Scripps researchers have reached a breakthrough in AI as current models only recognize still images.

Dec 10, 2024

Meta AI Introduces SPDL (Scalable and Performant Data Loading): A Step Forward in AI Model Training with Thread-based Data Loading

Posted by in category: robotics/AI

Training AI models today isn’t just about designing better architectures—it’s also about managing data efficiently. Modern models require vast datasets and need those datasets delivered quickly to GPUs and other accelerators. The problem? Traditional data loading systems often lag behind, slowing everything down. These older systems rely heavily on process-based methods that struggle to keep up with the demand, leading to GPU downtime, longer training sessions, and higher costs. This becomes even more frustrating when you’re trying to scale up or work with a mix of data types.

To tackle these issues, Meta AI has developed SPDL (Scalable and Performant Data Loading), a tool designed to improve how data is delivered during AI training. SPDL uses thread-based loading, which is a departure from the traditional process-based approach, to speed things up. It handles data from all sorts of sources—whether you’re pulling from the cloud or a local storage system—and integrates it seamlessly into your training workflow.

SPDL was built with scalability in mind. It works across distributed systems, so whether you’re training on a single GPU or a large cluster, SPDL has you covered. It’s also designed to work well with PyTorch, one of the most widely used AI frameworks, making it easier for teams to adopt. And since it’s open-source, anyone can take advantage of it or even contribute to its improvement.

Dec 10, 2024

NCI Researchers Test Generalizability of Artificial Intelligence (AI) Model

Posted by in category: robotics/AI

The hallmark of a good AI model is its ability to work the same in different groups, settings, and situations. See how these NCI researchers used in-house and external images to test their prostate model’s generalizability.

Dec 10, 2024

Scientists create first-ever blood-generating heart organoid

Posted by in category: biotech/medical

How do human organs develop and what happens to them when they become diseased? To answer these questions, researchers are increasingly focusing on so-called organoids. These mini-organs, just a few millimeters in size, consist of groups of cells cultivated in the laboratory that can form organ-like structures.

Similar to embryonic development, organoids make it possible to investigate the interaction of cells in three-dimensional space—for example in metabolic processes or disease mechanisms.

The production of organoids is tricky; the required nutrients, and signaling molecules must be added in a specific order and at specific times according to a precise schedule.

Dec 10, 2024

How Electrical and Calcium Signaling Work as One to Regulate Blood Flow

Posted by in categories: biotech/medical, neuroscience

A new study may reshape our understanding of blood flow regulation in the brain.

Dec 10, 2024

Scientists identify ultra-processed foods that fuel colon cancer and healthy alternatives that may offset the damage

Posted by in categories: biotech/medical, food

Scientists have found a new link between diet and colon cancer risk that could change how we fight the disease with more targeted treatments.

Page 11 of 12,154First89101112131415Last