Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

NASA Announces CHAPEA Crew for Year-Long Mars Mission Simulation

Four research volunteers will soon participate in NASA’s year-long simulation of a Mars mission inside a habitat at the agency’s Johnson Space Center in Houston. This mission will provide NASA with foundational data to inform human exploration of the Moon, Mars, and beyond.

Ross Elder, Ellen Ellis, Matthew Montgomery, and James Spicer enter into the 1,700-square-foot Mars Dune Alpha habitat on Sunday, Oct. 19, to begin their mission. The team will live and work like astronauts for 378 days, concluding their mission on Oct. 31, 2026. Emily Phillips and Laura Marie serve as the mission’s alternate crew members.

Through a series of Earth-based missions called CHAPEA (Crew Health and Performance Exploration Analog), carried out in the 3D-printed habitat, NASA aims to evaluate certain human health and performance factors ahead of future Mars missions. The crew will undergo realistic resource limitations, equipment failures, communication delays, isolation and confinement, and other stressors, along with simulated high-tempo extravehicular activities. These scenarios allow NASA to make informed trades between risks and interventions for long-duration exploration missions.

Astronomers uncover a hidden world on the solar system’s edge

Astronomers have uncovered a massive new trans-Neptunian object, 2017 OF201, lurking at the edge of our solar system. With an orbit stretching 25,000 years and a size that may qualify it as a dwarf planet, this mysterious world challenges long-held assumptions about the “empty” space beyond Neptune. Its unusual trajectory sets it apart from other distant bodies and may even cast doubt on the controversial Planet Nine hypothesis.

Tiny gold quantum needles with astonishing powers discovered

Scientists at the University of Tokyo have unveiled “gold quantum needles,” a newly discovered nanocluster structure formed under unusual synthesis conditions. Unlike typical spherical clusters, these elongated, pencil-shaped formations display unique quantum behaviors and respond to near-infrared light, making them promising tools for biomedical imaging and energy applications.

Heterochronic myeloid cell replacement reveals the local brain environment as key driver of microglia aging

Aging, the key risk factor for cognitive decline, impacts the brain in a region-specific manner, with microglia among the most affected cell types. However, it remains unclear whether this is intrinsically mediated or driven by age-related changes in neighboring cells. Here, we describe a scalable, genetically modifiable system for in vivo heterochronic myeloid cell replacement. We find reconstituted myeloid cells adopt region-specific transcriptional, morphological and tiling profiles characteristic of resident microglia. Young donor cells in aged brains rapidly acquired aging phenotypes, particularly in the cerebellum, while old cells in young brains adopted youthful profiles. We identified STAT1-mediated signaling as one axis controlling microglia aging, as STAT1-loss prevented aging trajectories in reconstituted cells. Spatial transcriptomics combined with cell ablation models identified rare natural killer cells as necessary drivers of interferon signaling in aged microglia. These findings establish the local environment, rather than cell-autonomous programming, as a primary driver of microglia aging phenotypes.

Claire Gizowski, Galina Popova, Heather Shin, Wendy Craft, Wenjun Kong, Bernd J Wranik, Yuheng C Fu, Tzuhua D Lin, Baby Martin-McNulty, Po-Han Tai, Kayla Leung, Nicole Fong, Devyani Jogran, Agnieszka Wendorff, David Hendrickson, Astrid Gillich, Andy Chang, Oliver Hahn are current or former employees of Calico Life Sciences LLC. The remaining authors declare no competing interest.

How Simple Rules Shatter Scientific Intuition | Stephen Wolfram

Get 50% off Claude Pro, including access to Claude Code, at http://claude.ai/theoriesofeverything.

As a listener of TOE you can get a special 20% off discount to The Economist and all it has to offer! Visit https://www.economist.com/toe.

In this episode, I speak with Stephen Wolfram—creator of Mathematica and Wolfram Language—about a “new kind of science” that treats the universe as computation. We explore computational irreducibility, discrete space, multi-way systems, and how the observer shapes the laws we perceive—from the second law of thermodynamics to quantum mechanics. Wolfram reframes Feynman diagrams as causal structures, connects evolution and modern AI through coarse fitness and assembled “lumps” of computation, and sketches a nascent theory of biology as bulk orchestration. We also discuss what makes science good: new tools, ruthless visualization, respect for history, and a field he calls “ruliology”—the study of simple rules, where anyone can still make real contributions. This is basically a documentary akin to The Life and Times of Stephen Wolfram. I hope you enjoy it.

Join My New Substack (Personal Writings): https://curtjaimungal.substack.com.

Listen on Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.

Timestamps:

/* */