Toggle light / dark theme

Collaboration and cooperation are key elements of human social interactions, which can contribute to the efficient achievement of shared goals. While many psychology and neuroscience studies have investigated cooperative behaviors among humans, the complex interplay between these behaviors and their neural underpinnings remain poorly understood.

A research team at Beijing Normal University, supervised by Dr. Yina Ma set out to further explore the neural basis of human cooperation, using a combination of behavioral tasks and intracranial electroencephalography (iEEG). Their paper, published in Nature Neuroscience, delineates distinctive neurocognitive profiles for different states during cooperative tasks.

“Our lab has long been dedicated to understanding how human brains communicate and interact in , such as collective decision-making, intergroup conflict and social cooperation,” Jiaxin Wang, co-first author of the paper, told Medical Xpress.

AI-powered data analysis tools have the potential to significantly improve the quality of scientific publications. A new study by Professor Mathias Christmann, a chemistry professor at Freie Universität Berlin, has uncovered shortcomings in chemical publications.

Using a Python script developed with the help of modern AI language models, Christmann analyzed more than 3,000 published in Organic Letters over the past two years. The analysis revealed that only 40% of the chemical research papers contained error-free mass measurements. The AI-based data analysis tool used for this purpose could be created without any prior programming knowledge.

“The results demonstrate how powerful AI-powered tools can be in everyday research. They not only make complex analyses accessible but also improve the reliability of scientific data,” explains Christmann.

As humans age, their brain function can progressively decline and they become more vulnerable to developing neurodegenerative diseases, such as dementia. Dementia and other progressive neurological conditions can significantly impair their memory, thinking skills and daily functioning, significantly reducing their quality of life.

Many psychology and neurological studies have tried to identify biological markers and lifestyle factors that can contribute to the development of dementia. Yet the contribution of psychological characteristics (e.g., traits, emotional well-being and cognitive resilience) to a decline in mental functions remains poorly understood.

Researchers at University of Barcelona, University College London (UCL), Normandy University and other institutes across Europe recently set out to fill this gap in the literature, by trying to determine whether specific sets of psychological characteristics relate to brain health in middle and late adulthood. Their paper, published in Nature Mental Health, identified three key psychological profiles that were linked to different cognitive and trajectories after middle-age.

A kind of umbilical cord between different quantum states can be found in some materials. Researchers at TU Wien have now shown that this “umbilical cord” is generic to many materials.

It is a basic principle of quantum theory: sometimes certain physical quantities can only assume very specific values; all the values in between are simply not permitted by physics. This fact plays a decisive role in the behavior of materials. Certain energy ranges are possible for the electrons of the material, while others are not. Among other things, this explains the difference between electrically conductive metals and non-conductive insulators.

Sometimes, however, surprising connections can arise between permitted ranges, through which electrons can switch from one range to the other. One such unusual transition region was discovered in 2007 in certain copper-containing materials, known as cuprates.

Simon Fraser University, the Greek Ministry of Culture, and the University of Bologna have conducted an isotope study on the dietary patterns of Mesolithic and Neolithic humans at Franchthi Cave, Greece. The report confirms a terrestrial-based diet with negligible consumption of marine resources during these periods.

Franchthi Cave, overlooking the Bay of Koilada in the Peloponnese, is one of Greece’s most significant prehistoric sites, spanning nearly 40,000 years of occupation. The site is stunningly beautiful, with a high vaulted arch at the cave entrance inviting visitors into an otherworldly space.

Excavated between 1967 and 1979, it provides a continuous record from the Upper Paleolithic through the Neolithic. The Mesolithic to Neolithic transition is characterized across Europe by the emergence of agriculture and a shift in dietary reliance from marine to terrestrial resources, especially in . Previous isotope studies of Franchthi suggested minimal marine input despite its coastal location.

When used correctly, font selection usually goes unnoticed, blending seamlessly with content and reader. When the One Times Square Billboard used a retired Microsoft Word default Calibri font to usher in 2025’s “Happy New Year” message, it was immediately met with sarcastic scorn and delightful derision for the uninspired choice (at least by people who pay attention to such things). Had the font faux pas been the branding rollout of a new app, product, or company, the consequences might have been more severe.

Hanyang University researchers in Korea have attempted to take the intuition and subjective judgment out of the art of font selection. Using computational tools and network analysis to develop an objective framework for font selection and pairing in design, the researchers aim to establish foundational principles for applying typography in visual communication.

Font choice plays a critical role in visual communication, shaping readability, emotional resonance, and overall design balance across mediums. According to the researchers, designers have traditionally relied on subjective rules for font pairing, such as mixing Serif and Sans-Serif or creating contrast. These rules are difficult to formalize and often apply to only a narrow subset of fonts.

Researchers from Tokyo Metropolitan University have discovered a new superconducting material. They combined iron, nickel, and zirconium, to create a new transition metal zirconide with different ratios of iron to nickel. The findings are published in the Journal of Alloys and Compounds.

While both iron zirconide and nickel zirconide are not superconducting, the newly prepared mixtures are exhibiting a “dome-shaped” phase diagram typical of so-called “unconventional superconductors,” a promising avenue for developing high temperature superconducting materials which can be more widely deployed in society.

Superconductors already play an active role in cutting-edge technologies, from in and maglev systems to superconducting cables for power transmission. However, they generally rely on cooling to temperatures of around four Kelvin, a key roadblock in wider deployment of the technology.

Commonwealth Fusion Systems (CFS) is developing a tokamak device called SPARC. The company aims to demonstrate the critical fusion energy milestone of producing more output power than input power for the first time in a device that can scale up to commercial power plant size. However, this achievement is only possible if the plasma doesn’t melt the device.

Researchers from CFS and Oak Ridge National Laboratory (ORNL) have collaborated on fusion boundary research through a series of projects, including ORNL Strategic Partnership Projects and Laboratory Directed Research and Development projects, work under the Innovation Network for Fusion Energy (INFUSE), and other work in partnership with General Atomics.

Throughout this collaboration, ORNL has developed simulation capabilities required to address critical and time-sensitive design issues for the SPARC .

Watch any match at this year’s Australian Open and you’ll see balls curving in the air or bouncing higher or lower than expected. Players such as Novak Djokovic, Iga Swiatek and Coco Gauff are particularly masterful at the art.

The secret? It’s all about spin.