Toggle light / dark theme

Professor José R Penadés told the BBC that Google’s tool reached the same hypothesis that his team had – that superbugs can create a tail that allows them to move between species. In simpler terms, one can think of it as a master key that enables the bug to move from home to home.

Penadés asserts that his team’s research was unique and that the results hadn’t been published anywhere online for the AI to find. What’s more, he even reached out to Google to ask if they had access to his computer. Google assured him they did not.

Arguably even more remarkable is the fact that the AI provided four additional hypotheses. According to Penadés, all of them made sense. The team had not even considered one of the solutions, and is now investigating it further.

Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions. We found that the NF-κB protein p65 is significantly downregulated in the liver of several kinds of slow-aging mice. These included both sexes of GHRKO and Snell Dwarf mutant mice, and in females only of PAPPA KO mice. P65 is also lower in both sexes of mice treated with rapamycin, canagliflozin, meclizine, or acarbose, and in mice undergoing caloric restriction. Two drugs that extend lifespan of male mice, i.e. 17α-estradiol and astaxanthin, however, did not produce lower levels of p65.

In a development for artificial intelligence, researchers have unveiled a synaptic device array that shows promise for enhancing artificial visual systems. This innovative array, measuring a compact 0.7 × 0.7 cm2, integrates the capabilities of sensing, memory, and processing to mimic the intricate functions of the human visual system.

Utilizing wafer-scale monolayer molybdenum disulfide (MoS2) and for enhanced electron capture, the array exhibits remarkable coordination between optical and electrical components. It is capable of both writing and erasing images and has achieved a 96.5% accuracy in digit recognition, marking a significant leap forward in the development of large-scale neuromorphic systems.

The human visual system processes complex visual data efficiently through an interconnected network that allows for parallel processing. However, current artificial vision systems face numerous challenges, including circuit complexity, high power consumption, and difficulties in miniaturization.

Gladstone researchers create a drug that replicates the cellular effects of low-oxygen therapy to treat inherited mitochondrial diseases.

For most people, living at high altitudes—where oxygen levels are lower than at sea level—can offer health benefits, such as reduced rates of heart disease and improved endurance. However, for individuals with inherited mitochondrial diseases, who often do not survive beyond childhood, low-oxygen environments like those at high elevations could be life-saving, potentially prolonging their lifespan and alleviating symptoms.

Now, researchers at Gladstone Institutes have developed a drug that replicates the effects of low-oxygen exposure. In mice with Leigh Syndrome—the most common childhood mitochondrial disease—the drug, called HypoxyStat, extended lifespan more than threefold and reversed brain damage and muscle weakness, even when administered in the disease’s late stages.