Toggle light / dark theme

A notable aspect of the CL1 is its ability to learn and adapt to tasks. Previous research has demonstrated that neuron-based systems can be trained to perform basic functions, such as playing simple video games. Cortical Labs’ work suggests that integrating biological elements into computing could improve efficiency in tasks that traditional AI struggles with, such as pattern recognition and decision-making in unpredictable environments.

Cortical Labs says that the first CL1 computers will be available for shipment to customers in June, with each unit priced at approximately $35,000.

The use of human neurons in computing raises questions about the future of AI development. Biological computers like the CL1 could provide advantages over conventional AI models, particularly in terms of learning efficiency and energy consumption. The adaptability of neurons could lead to improvements in robotics, automation, and complex data analysis.

In the Patagonia region of southern Chile, there are “living rocks.”

While that’s what the locals say, Veronica Godoy-Carter, associate professor of biology and biochemistry at Northeastern University, says it’s a little more complicated than that.

“They’re actually little mountains,” she says, of “giant biofilms that are billions of years old. Literally billions.”

Scientists have developed a quantum computer that uses light to process data, paving the way for quantum computers that can operate in a networked environment at room temperature.

The new system, called Aurora, is the first photonic quantum computer in the world that can operate at scale using several modules interconnected through fiber optic cables. The system presents a solution to some of quantum computing’s biggest problems — namely operation at scale, fault tolerance and error correction, Xanadu representatives say.

Back in 1971, a couple of British astronomers predicted the existence of a black hole at the center of our galaxy. And in 1974, other astronomers found it, naming it Sagittarius A*.

Since then, astronomers have discovered that a similar “supermassive black hole” sits at the center of almost every other large galaxy. In 2019, they took the first image of a supermassive black hole. Today, these exotic objects are a fundamental part of our understanding of how galaxies form and evolve.

But what of smaller astronomical bodies, like the Large Magellanic Cloud, a dwarf satellite galaxy that is expected to collide with the Milky Way in 2.4 billion years? Nobody is quite sure whether clouds like this might also house supermassive black holes.