Toggle light / dark theme

This article does bring one interesting question up for the broader population to really ask themselves and that is at what point does an individual truly become a Cyborg v. not? And, how do we know for sure that some of us are not already there given the bionic implants, our daily interactions and addiction to technology. Definitely, something for each person to think about.


Roy Batty was born—sorry, “incepted”—Friday, Jan. 8, 2016. The Blade Runner replicant, played with aggressive melancholy by Rutger Hauer, went on to see attack ships on fire off the shoulder of Orion and watch C-beams glitter in the dark near the Tannhäuser Gate before delivering one of sci-fi’s most moving soliloquies on life, memory, and mortality. And then he was lost, like tears in the rain.

Quibble if you want: Batty was an android, a replicant—not a cyborg. But in Blade Runner he wasn’t one half of the man versus machine binary. He was the complication—the living, breathing proof that a mere assemblage of technology could be, in fact, more human than human. This refusal of a simple division—the belief that sometimes machines could show us humanity, even as humans could become like machines—was a hallmark of Philip K. Dick’s later work, and it’s distilled to its essence in Batty.

So he’s not a cyborg, but he does what the cyborg does: Make us question the boundaries we draw between man and machine. When we think of cyborgs, we often think, well, of Star Trek’s Borg, a pale, fleshy collective bonded to its Giger-esque machinery. Or Darth Vader, clad in black and, again, pale and disfigured. Or, more heroically and telegenically, Robert Downey Jr. as Iron Man, an armored hero with a machine for a heart.

The real question is what are these? Is it old debris or something else?


Vietnamese military seized three bizarre metal objects that fell from the sky for military investigation. Initial findings showed they are made from Russia and could be part of a failed satellite launch. Similar objects were also found in Turkey and Spain in November 2015.(Photo : World News Times | YouTube)

The Vietnamese military seized three metal balls that fell from the sky on Saturday. The mysterious objects landed in northern Vietnam where witnesses from the Tan Dong and Bao Dap communities heard thunder-like sounds and saw “flying objects” in the sky before the metal balls crash-landed.

The two smaller metal balls weighed 250 grams (about 0.55 pounds) and 6 kilograms (roughly 13 pounds) respectively. Both fell in the Yen Bai province where the smaller one hit a roof of a house while the bigger one landed in a garden of resident Tran Thi Loi.

Read more

As we explore opportunities in space to colonized or even expand business opportunities in space such as mining, and discovering materials that could be brought back to earth to use; it will be important for scientists and researchers to look at ways in how technologies like CRISPR, nanobots, synthetic implants, etc. can assist in mitigating the impacts on humans in space.


A new report commissioned by NASA highlights many of the risks connected with one of the agency’s major goals: putting more humans in space for longer periods of time.

Read more

This is a huge position to take on AI. Very gutsy of Ray.


All technology impacts our individual daily lives one way or another—but perhaps no technology makes us question our collective humanity as much as artificial intelligence.

Ray Kurzweil, inventor and futurist, spoke to an audience during a session last summer about a few of the political and philosophical implications of AI when he was asked, “In a world where AI passes the Turing test, who gets to vote? Does democracy make sense?”

Sharing my recent posting that I did on Linkedin Pulse. I will admit that I purposely delayed this article in concerns of creating a panic; however, with the progress that has been occuring across the globe and in some cases accelerated the maturity of this technology; I believe it is time for governments, industries, etc. to start thinking about their own broader strategic plans around Quantum as well as how they will address any impacts.


Quantum Computing is making great progress in so many areas such as chips, network/ Internet, etc. each month. And, many industries such as financials, telecom, tech, and public sector namely defense and space, etc. have made big investments in this technology as well as have developed some interesting partnerships such as Wall Street. Everything looks so promising and exciting for our future when we look at the various ways how Quantum Computing can change our lives around AI, improving the medical technologies, how we interact with devices (wearables, VR, etc.), and even how we travel will advance through this technology. The future looks extremely rosy and bright; right?.

I believe it can be with Quantum; however, in every major shift/ disruption in technology, there is always a transformation progression that has to naturally occur thru stages. And, Quantum is no different; however, the disruption that Quantum will bring is going to be on a much more massive scale than what we have seen in the past. The reason why is Quantum is truly going to impact and improve every area of technology not just in devices, or a platform, AI, VR, etc.; I mean everything in technology will be changed and improved by Quantum over time.

Granted this will not be like a major change overnight like we saw with the iPhone, etc. This initial change will occur over a series of years possibly over the next 7 to 10 years. As each country continues to accelerate in their own efforts to be a fully Quantumized; we need to understand where the potential risks exist and have a good plan for how we plan to address our own risks and challenges during and after this transformation.

Read more

The MMTP is testing Senolytics in an ambitious large scale mouse longevity project.


The goal of regenerative medicine is both quantity and quality whilst traditional medicine has provided quantity often at the cost of quality. Regenerative medicine proposes to reduce the frailty and decline of old age by rejuvenating the body and promoting healthy longevity. With advances in technology, research and our understanding of the aging process, this is now becoming a realistic proposition.

Some drugs already tested have been found to increase mouse lifespan such as Metformin 1,2 and Rapamycin 3.These drugs are even now moving into human clinical trials to see if the above benefits translate into people. However, there are many more promising substances that have never been properly tested and we do not know if they could extend healthy lifespan.

How fast science advances depends on how much quality research is being conducted. Currently there are few high impact studies investigating lifespan initiated each year ­ and with so many promising substances to test this is all a painfully slow process. The Major Mouse Testing Project [MMTP] is aiming to help by rapidly testing compounds and speeding up progress.

**Spanish architect Alberto Villanueva’s Mars Utopia concept would see the planet transformed into an inhabitable environment using towers formed by bacteria**

Villanueva, who works at Idea Architecture Office, created the project while completing a masters in Environment Design at London’s Ravensbourne College. “As an architect I am worried about the overpopulation issue”. “I was studying how the most populated cities around the world are growing non-stop. At the same time I realised that at least 30 per cent of territories are in extreme environments and I wanted to understand how, with my responsibility as an architect, I could think in new ways to build in these areas,” he added.

![enter image description here](http://static.dezeen.com/uploads/2016/01/Mars-Utopia_Alberto…1568_3.jpg “enter image title here”)

Read more