Menu

Blog

Page 1185

Dec 9, 2023

Study offers new insights into how immune cells recognize their enemies

Posted by in categories: biotech/medical, genetics

In order for immune cells to do their job, they need to know against whom they should direct their attack. Research teams at the University of Würzburg have identified new details in this process.

As complicated as their name is, they are important for the human organism in the fight against pathogens and cancer: Vγ9Vδ2 T cells are part of the immune system and, as a subgroup of white blood cells, fight cells and cells infected with pathogens. They recognize their potential victims by their altered cell metabolism.

Research teams from the University of Würzburg and the University Hospital of Würzburg, together with groups in Hamburg, Freiburg, Great Britain and the U.S., have now gained new insights into how these cells manage to look inside the cell. Thomas Herrmann, Professor of Immunogenetics at the Institute of Virology and Immunobiology and his colleague Dr. Mohindar Karunakaran at Julius-Maximilians-Universität Würzburg (JMU), were responsible for the study published in the journal Nature Communications.

Dec 9, 2023

Rotor R550X: A full-size autonomous helicopter anyone can buy

Posted by in categories: robotics/AI, transportation

Rotor Technologies is now in production on a full-size unmanned helicopter for civilian use. Based on the Robinson R44 Raven II, the R550X flies for more than three hours, at speeds up to 150 mph (241 km/h), carrying up to 1,200 lb (550 kg) of cargo.

According to Torklaw, helicopters have about 9.84 crashes per 100,000 hours of flight time. That’s curiously low, given their reputation and the fact that “general aircraft” have 7.28 crashes per 100,000 hours. But still, they’re notoriously tricky to fly, and there are a growing number of projects attempting to make them much easier, using simple fly-by wire joystick controls, or even simpler one-finger tablet control schemes.

Continue reading “Rotor R550X: A full-size autonomous helicopter anyone can buy” »

Dec 9, 2023

PlayStation Will Delete Purchased Discovery Shows

Posted by in category: computing

The negative side of not having it on a disk or flash drive.


Sony announced on Monday that it would remove all Discovery content, including shows like “MythBusters” and “Deadliest Catch,” from user libraries, even if they had been purchased on the PlayStation Store.

The company, which owns and operates PlayStation game consoles, said in a brief statement that the Discovery shows would be deleted on Dec. 31, attributing the decision to “our content licensing arrangements with content providers.”

Continue reading “PlayStation Will Delete Purchased Discovery Shows” »

Dec 9, 2023

How Former Astronaut Mike Massimino Turned Three No’s From NASA Into a YES

Posted by in category: space

“One in a million is not zero.” If you’re unfamiliar with the story of how New York Times bestselling author, Columbia University professor of engineering an…

Dec 8, 2023

Paving the way to efficient architectures: StripedHyena-7B, open source models offering a glimpse into a world beyond Transformers

Posted by in category: futurism

One of the focus areas at Together Research is new architectures for long context, improved training, and inference performance over the Transformer architecture. Spinning out of a research program from our team and academic collaborators, with roots in signal processing-inspired sequence models, we are excited to introduce the StripedHyena models. This release includes StripedHyena-Hessian-7B (SH 7B), a base model, and StripedHyena-Nous-7B (SH-N 7B), a chat model. StripedHyena builds on the many lessons learned in the past year on designing efficient sequence modeling architectures: H3, Hyena, HyenaDNA, and Monarch Mixer.

Dec 8, 2023

Researchers crack the cellular code on protein folding, offering hope for many new therapeutic avenues

Posted by in categories: biotech/medical, innovation

While we often think of diseases as caused by foreign bodies—bacteria or viruses—there are hundreds of diseases affecting humans that result from errors in cellular production of proteins.

A team of researchers led by the University of Massachusetts Amherst leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.

The research, published in the journal Molecular Cell, explores members of a family of proteins called serpins, which are implicated in a number of diseases. The research is the first to investigate how the location and composition of carbohydrates attached to the serpins ensure that they fold correctly.

Dec 8, 2023

Six Ways Machine Learning Will Transform the Biopharmaceutical Lifecycle

Posted by in category: robotics/AI

This listicle explores four ways that AI and ML are accelerating the biopharmaceutical lifecycle and two big ways that companies are starting to think about their data differently.

Dec 8, 2023

Reevaluating Exomoon Claims: New Study Challenges Findings around Kepler-1625b and Kepler-1708b

Posted by in category: space

A recent study published in Nature Astronomy uses a new method to challenge previous studies regarding the discoveries of the first exomoons around two exoplanets, Kepler-1708b and Kepler-1625b, located approximately 5,436 and 7,534 light-years from Earth, respectively. This study was conducted by researchers at the Max Planck Institute for Solar System Research and the Sonnenberg Observatory and holds the potential to develop new observational methods in identifying and confirming the existence of exomoons throughout the cosmos.

Artist illustration of an exomoon orbiting a gas giant. (Credit: NASA/JPL-Caltech)

“Exomoons are so far away that we cannot see them directly, even with the most powerful modern telescopes,” said Dr. René Heller, who is an astrophysicist at Max Planck and lead author of the study.

Dec 8, 2023

Evaluating Sampling Methods for Finding Life Beyond Earth

Posted by in categories: alien life, electronics

Can amino acids, the key building blocks of life, survive high-speed impacts from a spacecraft orbiting another world? This is what a recent study published in The Proceedings of the National Academy of Sciences (PNAS) hopes to find out as a team of researchers at the University of California San Diego (UCSD) conducted laboratory experiments to see if biosignature molecules identified in the plumes of Saturn’s icy moon, Enceladus, by NASA’s Cassini spacecraft could survive hypervelocity impacts experienced by Cassini passing through the plumes. This study is a first-of-its-kind to investigate how extraterrestrial plumes can be analyzed and holds the potential to help researchers develop more efficient techniques for finding extraterrestrial life beyond Earth.

For the study, the researchers used the custom-built Hypervelocity Ice Grain Impact Mass Spectrometer to investigate if ice grains being shot out of Enceladus’s plumes at 800 mph (400m/s) could have survived after striking Cassinis’ detectors, which were estimated between 4 to 10.9 mi/s (6.5 to 17.5 km/s). For the tests, the team shot water through a needle at a high voltage, which caused it to break down into droplets followed by them entering a vacuum where they freeze, and the team used the spectrometer to measure the results of the grains impacting a microchannel plate detector. The results demonstrated that amino acids within ice grains could survive up to impacts of 2.6 miles per second (4.2 km/s), which the team says could serve as a baseline for sampling such plumes.

“To get an idea of what kind of life may be possible in the solar system, you want to know there hasn’t been a lot of molecular fragmentation in the sampled ice grains, so you can get that fingerprint of whatever it is that makes it a self-contained life form,” said Dr. Robert Continetti, who is a Distinguished Professor of Chemistry and Biochemistry at UCSD and a co-author on the study. “Our work shows that this is possible with the ice plumes of Enceladus.”

Dec 8, 2023

DNA-folding nanorobots can manufacture limitless copies of themselves

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Researchers have demonstrated a programmable nano-scale robot, made from a few strands of DNA, that’s capable of grabbing other snippets of DNA, and positioning them together to manufacture new UV-welded nano-machines – including copies of itself.

The robots, according to New Scientist, are created using just four strands of DNA, and measure just 100 nanometers across, so about a thousand of them could squeeze up into a line the width of a human hair.

The team, from New York University, the Ningbo Cixi Institute of Biomechanical Engineering, and The Chinese Academy of Sciences, says the robots surpass previous efforts, which were only able to assemble pieces into two-dimensional shapes. The new bots are able to use “multiple-axis precise folding and positioning” to “access the third dimension and more degrees of freedom.”